混合专家模型
混合专家模型(英語:mixture of experts,简称MoE),或译为多专家模型,是一种机器学习技术,通过门控(gating)模型将单一任务空间划分为多个子任务,再由多个专家网络(子模型)分别处理特定的子任务,最终得到整体的预测结果。[1]混合专家模型与集成学习有相似之处,它们都应用多个子模型来处理问题。但它们的区别在于,混合专家模型中的每个专家都是针对不同的数据子空间进行训练的,以适应不同类型的输入数据。而集成学习一般而言则是使用多种模型对整个数据空间进行训练。 层级混合专家模型 (英語:hierarchical mixtures of experts)是包含多个层级的混合专家模型。与使用单一门控模型的普通混合专家模型相比,层级混合专家模型中的门控模型呈类似决策树的多层结构,以适应更为复杂与灵活的应用场景。[2] 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia