渐近分析渐近分析(asymptotic analysis、asymptotics),在数学分析中是一种描述函数在极限附近的行为的方法。有多个科学领域应用此方法。例子如下: 最简单的例子如下:考虑一个函数,我们需要了解当变得非常大的时候的性质。 令,在特别大的时候,第二项比起第一项要小很多。 于是对于这个函数,有如下断言:「在的情况下与渐近等价」,记作。 渐近等价定义:给定关于自然数的复函数和, 命题表明(使用小o符号)
或(等价记法) 。 这说明,对所有正常数,存在常量,使得对于所有的有 。 当不是0或者趋于无穷大时,该命题可等价记作 。 渐近等价是一个关于的函数的集合上的等价关系。非正式地,函数的等价类包含所有在极限情况下近似等于的函数。 渐近展开函数的渐近展开是它的一种级数展开。这种展开的部分和未必收敛,但每一个部分和都表示的一个渐近表示式。例子:斯特灵公式。 相關條目參考注釋外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia