無限胞體在幾何學中,無限胞體或無限胞形是指有無限多個胞或維面的多胞體。其在數學上可以分成兩大類:[1] 另外一個相關議題為無限維多胞體,然而相關研究領域尚未成熟,因此學術上尚未有一個對無限維多胞體的普遍接受之定義。[2][3] 種類無限胞體(英語:Apeirotope)意指有無限個面、無限個胞、無限條邊和無限個頂點的多胞體。 其性質皆與無限面體相似,由空間密鋪即空間堆砌組成。四维空間的正無限胞體只有一種,即立方體堆砌[4]。
於雙曲空間亦的對應的幾何結構:
五維雙曲空間也有三種正無限胞體:
空間填充結構一般而言n維空間的空間填充結構可以視為n+1空間中的無限胞體。[5] 例如平面鑲嵌圖是二維空間的幾何結構,其可以視為三維空間的無限面體;三維堆砌結構亦可以視為四維空間的無限胞體。 扭歪無限胞體二維空間三維空間三維空間中的扭歪無限胞體即扭歪無限面體,目前已知有三種正圖形屬於此類:
另外亦有30種正無限面體存於三維歐氏空間[6]。 參見參考文獻
參考書目
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia