笛卡儿符号法则笛卡儿符号法则,首先由笛卡儿在他的作品La Géométrie中描述,是一个用于确定多项式的正根或负根的个数的方法。 如果把一元实系数多项式按降幂方式排列,则多项式的正根的个数等于相邻的非零系数的符号的变化次数,或者比它依次小2的整倍数;而负根的个数则是把所有奇数次项的系数变号以后,所得到的多项式的符号的变化次数,或者比它小2的整倍数。 例如,以下的多项式 在第二项和第三项有一个符号变化。因此它正好有一个正根。实际上,我们可以看到,这个多项式可以分解为: 因此它的根为−1(二重根)和1。 把奇数次项变号,可得: 这个多项式有两个符号变化,因此这个多项式有2个或0个正根,原来的多项式有2个或0个负根。这个多项式可以分解为: 因此根为1(二重根)和−1。 特殊情况注意如果知道了多项式只有实数根,则利用这个方法可以完全确定正根的个数。由于零根的重复度很容易计算,因此也可以求出负根的个数。于是所有根的符号都可以确定。 参见外部链接本條目含有来自PlanetMath《Descartes' rule of signs》的內容,版权遵守知识共享协议:署名-相同方式共享协议。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia