统计距离
在统计学、概率论和信息论中,统计距离量化了两个统计对象之间的距离。统计对象可以是两个随机变量,两个概率分布或样本,或者一个独立样本点和一个点群之间的距离,或者更加广泛的样本点。 统计距离很多情况下不是由度量诱导的,它们不一定是对称的。一些统计距离也被称为统计区别度(statistical divergence)。 专用术语各种统计距离常常有许多名称。有时名称的相似性容易引起误解,有时不同作者或不同时期一些术语的意义也不尽相同。常见的有统计偏差(deviation),区分度(discriminant),区别度(divergence),对比函数(contrast function),度量等。信息论中也称为交叉熵(cross entropy),相对熵(relative entropy),discrimination information, information gain等。 度量距离给定一个集合 X,,其上的度量距离是一个非负实值函数 d : X × X → R 对任意的 X中的 x, y, z,这个函数满足如下条件:
广义距离许多统计距离不满足度量距离的要求。不满足正定性的常常被称为伪度量,不满足对称性的通常被称为准度量,不满足三角不等式被称为半度量。 只满足上述(1)和(2)条件的统计距离被称为区别度(divergence)。 例子f-区别度:KL区别度(相对熵), Hellinger区别度,全变差距离; 仁义熵; 延森-香浓区别度。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia