黎曼-西格尔公式在数学中,黎曼-西格尔公式是黎曼ζ函數的近似函数方程误差的渐近公式,前者是ζ函數的近似值,由两个有限狄利克雷级数的和来近似。Siegel (1932)在波恩哈德·黎曼1850年代一篇未发表的手稿中发现这个公式。西格尔从黎曼-西格尔积分公式中推导出它,这是一个涉及ζ函数围道积分的表达式。该公式通常用于计算黎曼-西格尔公式的值,与欧德里兹科-肖恩哈格算法相结合,可以大大加快算法的速度。当沿着临界线使用时,通常将其变换为关于Z函数的公式比较有用。 如果M和N是非负整数,那么ζ函数等于 其中 是函数方程ζ(s) = γ(1-s) ζ(1 − s)中出现的因数,且 是一个围道积分,围道的起点和终点在+∞处,并最多绕绝对值奇点2πM圈。近似函数方程给出了误差项大小的估计。Siegel (1932)和Edwards (1974)通过将最速下降法应用于该积分,推导出黎曼-西格尔公式,将误差项R(s)渐近展开为Im(s)的负幂次级数。在应用中,s通常位于临界线上,并且选择正整数M和N约为(2πIm(s))1/2。Gabcke (1979)发现了一个黎曼-西格尔公式误差的较好界限。 黎曼积分公式黎曼证明了 积分围道是一条斜率为-1的线,通过0和1之间(Edwards 1974,7.9)。 他用此给出了以下ζ函数的积分公式: 参考
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia