Залежныя і незалежныя зменныя![]() Залежныя і незалежныя зменныя — зменныя ў матэматычным мадэляванні , статыстычным мадэляванні і эксперыментальных навуках. Залежныя зменныя вывучаюцца пры дапушчэнні або патрабаванні, што яны залежаць паводле нейкіх законаў або правіл (напрыклад, паводле матэматычнай функцыі) ад значэнняў іншых зменных. Незалежныя зменныя, у сваю чаргу, не разглядаюцца як залежныя ад якой-небудзь іншай зменнай у рамках эксперыменту[заўв 1]. У гэтым сэнсе часта незалежнымі зменнымі з’яўляюцца час, прастора, шчыльнасць, маса[2][3] і папярэднія значэнні некаторых назіранняў (напрыклад, насельніцтва Зямлі), якія выкарыстоўваюцца для прагназавання наступных значэнняў (залежная зменная)[4]. У эксперыменце любая зменная, якой можна прыпісаць значэнне без прыпісвання значэння любой іншай зменнай, называецца незалежнай зменнай. Мадэлі і эксперыменты правяраюць уплыў незалежных зменных на залежныя зменныя. Характар такога ўплыву вывучаецца шляхам змянення ўваходных значэнняў, таксама вядомых як рэгрэсары ў статыстычным кантэксце. Часам, нават калі іх уплыў не ўяўляе непасрэднага інтарэсу, незалежныя зменныя могуць улічвацца з іншых прычын, напрыклад, каб ацаніць іх магчымы змяшальны эфект. У матэматыцыУ матэматыцы функцыя гэта правіла ператварэння ўваходных даных (у найпрасцейшым выпадку, лікаў або набораў лікаў) у выхадныя (якія таксама могуць быць лікамі)[5]. Сімвал, які абазначае адвольнае ўваходнае значэнне, называецца незалежнай зменнай, у той час як сімвал, які абазначае выхадное значэнне, называецца залежнай зменнай[6]. Найбольш распаўсюджаным сімвал для ўваходнага значэння — x, а для выхаднога — y; сама функцыя звычайна запісваецца як y = f(x)[6][7]. Можа існаваць некалькі незалежных зменных або некалькі залежных зменных. Напрыклад, у мнагамерным аналізе часта сустракаюцца функцыі выгляду z = f(x,y), дзе z — залежная зменная, а x і y — незалежныя зменныя[8]. Функцыі з некалькімі выхадамі часта называюць вектарнымі функцыямі . У мадэляванні і статыстыцыУ матэматычным мадэляванні залежная зменная разглядаецца ў кантэксце залежнасці яе значэння ад значэнняў незалежных зменных. У простай стахастычнай лінейнай мадэлі yi = a + bxi + ei, yi — i-ае значэнне залежнай зменнай, а xi — i-ае значэнне незалежнай зменнай. Складаемае ei называецца «памылкай» і змяшчае ў сабе зменлівасць залежнай зменнай, якая не можа быць растлумачана незалежнай зменнай. У выпадку некалькіх незалежных зменных, мадэль мае выгляд yi = a + bxi,1 + bxi,2 + ... + bxi,n + ei, дзе n — колькасць незалежных зменных. Пры правядзенні эксперыментаў зменная, якой маніпулюе эксперыментатар, называецца незалежнай зменнай[9]. Залежная зменная — гэта значэнне, якое, як чакаецца, зменіцца ў выніку маніпулявання незалежнай зменнай[10]. У машынным навучанні залежная зменная называецца мэтавай (або ў некаторых выпадках атрыбутам меткі)[11]. Значэнні мэтавай зменнай вядомыя загадзя для навучальнага і тэставага набораў даных , а задача мадэлі — навучыцца прагназаваць значэнні мэтавай зменнай для іншых даных. Мэтавая зменная выкарыстоўваецца ў алгарытмах кіраванага навучання , але не выкарыстоўваецца ў некіраваным навучанні . СінонімыУ залежнасці ад кантэксту незалежную зменную часам называюць «прэдыктарнай зменнай», «рэгрэсарам», «каварыятай», «маніпуляванай зменнай», «тлумачальнай зменнай», «фактарам рызыкі » (гл. медыцынская статыстыка ), «прыкметай » (у машынным навучанні і распазнаванні вобразаў ) або «уваходнай зменнай»[12][13]. У эканаметрыцы тэрмін «кантрольная зменная» звычайна выкарыстоўваецца замест «каварыята»[14][15][16][17][18]. У эканамічнай супольнасці незалежныя зменныя называюцца яшчэ «экзагеннымі » [крыніца?]. Некаторыя аўтары аддаюць перавагу «тлумачальнай зменнай» над «незалежнай зменнай», бо велічыні, якія разглядаюцца як незалежныя зменныя, могуць не быць статыстычна незалежнымі або незалежна маніпуляванымі даследчыкам[19][20]. У выпадку, калі незалежныя зменныя называюць «тлумачальнымі», некаторыя аўтары аддаюць перавагу тэрміну «зменная адказу» для залежнай зменнай[13][19][20]. У залежнасці ад кантэксту залежную зменную часам называюць «зменнай адказу», «рэгрэсандай», «крытэрыем», «прагназуемай зменнай», «вымеранай зменнай», «растлумачанай зменнай», «эксперыментальнай зменнай», «выніковай зменнай», «выхадной зменнай», «эндагеннай зменнай», «мэтавай зменнай» або «меткай»[13]. Некаторыя аўтары аддаюць перавагу «растлумачанай зменнай» над «залежнай зменнай», бо велічыні, якія разглядаюцца як залежныя зменныя, могуць не быць статыстычна залежнымі[21]. У выпадку, калі залежная зменная называецца «растлумачанай зменнай», некаторыя аўтары аддаюць перавагу тэрміну «прэдыктарная зменная» для незалежных зменных[21].
Іншыя зменныяЗменная можа ўплываць на значэнні залежных ці незалежных зменных, але не знаходзіцца ў цэнтры ўвагі эксперыменту. Тады значэнне гэтай зменнай імкнуцца трымаць пастаянным або кантраляваць іншым чынам, каб зменшыць яе ўплыў на эксперымент. Такія зменныя могуць называцца «падкантрольнымі зменнымі», «кантрольнымі зменнымі » або «фіксаванымі зменнымі». Староннія зменныя, калі яны ўключаны ў рэгрэсійны аналіз як незалежныя, могуць дапамагчы даследчыку з дакладнай ацэнкай параметраў, прагназаваннем і дапасаванасцю мадэлі , але не ўяўляюць істотнай цікавасці для даследаванай гіпотэзы. Напрыклад, у даследаванні, якое вывучае ўплыў вышэйшай адукацыі на заробак цягам усяго жыцця, староннімі зменнымі могуць быць гендар, этнічная прыналежнасць, сацыяльны клас, генетыка, інтэлект, узрост і гэтак далей. Зменная з’яўляецца старонняй толькі тады, калі можна меркаваць (або паказаць), што яна ўплывае на залежную зменную. Калі выключыць з рэгрэсіі староннюю зменную, якая мае ненулявую каварыяцыю з незалежнымі зменнымі, вынік рэгрэсіі будзе зрушаны адносна эфекту гэтых незалежных зменных. Такі эфект называецца змяшальным зрухам або зрухам прапушчаных зменных ; у такіх сітуацыях неабходныя змены ў мадэлі і/або статыстычны кантроль за староннімі зменнымі. Староннія зменныя часта падзяляюцца на тры тыпы:
У мадэляванні зменлівасць, якая не ахоплена незалежнай зменнай, пазначаецца і вядомая як «рэшта », «пабочны эфект», «памылка », «нерастлумачаная частка», «рэшткавая зменная», «парушэнне» або «талерантнасць». Прыклады
Заўвагі
Зноскі
|
Portal di Ensiklopedia Dunia