Ступе́нная[1], або ступе́невая[2] фу́нкцыя — функцыя выгляду , дзе (паказчык, або паказчык ступені) — некаторы рэчаісны лік[3]. Да ступенных часта прылічваюць і функцыі выгляду , дзе k — нейкі множнік расцяжэння[4]. Існуе таксама камплекснае абагульненне ступеневай функцыі. На практыцы паказчык ступені амаль заўсёды з’яўляецца цэлым ці рацыянальным лікам.
Рэчаісная ступенная функцыя
Абсяг вызначэння
Калі паказчык ступені — цэлы лік, то ступенную функцыю можна вызначыць на ўсёй лікавай прамой (магчыма, акрамя нуля).
Калі , дзе — узаемна простыя лікі, — няцотны, то ступенная функцыя таксама вызначана пры любых рэчаісных x (магчыма, акрамя нуля).
У агульным выпадку ступенная функцыя вызначана толькі пры (у абсяг вызначэння можа ўваходзіць і нуль, гл. ніжэй).
Калі , то функцыя вызначана таксама і пры .
Пры нуль ёсць асаблівым пунктам ступеннай функцыі.
Тут паказчык ступені c — некаторы камплексны лік. Значэнне функцыі, адпаведнае галоўнаму значэнню лагарыфму, называецца галоўным значэннем ступені. Напрыклад, значэнне роўнае , дзе k — адвольны цэлы, а яго галоўнае значэнне роўнае .
Камплексная ступенная функцыя істотна адрозніваецца ад свайго рэчаіснага адменніку. З-за мнагазначнасці камплекснага лагарыфму яна, увогуле кажучы, таксама мае бясконца многа значэнняў.
Аднак два выпадкі, важныя ў прыкладаннях, разглядаюцца асобна:
Пры натуральным паказчыку ступені функцыя адназначная і n-лістная[6].
Калі паказчык ступені — дадатны рацыянальны лік, г.зн. (нескарачальны) дроб , то функцыя будзе мець q розных значэнняў[5].