Тэарэма аб цыркуляцыі магнітнага поляТэарэма аб цыркуляцыі магнітнага поля — адна з фундаментальных тэарэм класічнай электрадынамікі, сфармуляваная Андрэ Мары Амперам ў 1826 годзе. У 1861 году Джэймс Максвел зноў вывеў гэтую тэарэму, абапіраючыся на аналогіі з гідрадынамікай, і абагульніў яе (гл. ніжэй). Ураўненне, якое прадстаўляе сабой змест тэарэмы у гэтым абагульненым выглядзе, уваходзіць у лік ураўненняў Максвела. (Для выпадку пастаянных электрычных палёў - гэта значыць у прынцыпе ў магнітастатыцы - верная тэарэма ў першапачатковым выглядзе, які сфармуляваў Ампер і прыведзены у артыкуле першым; для агульнага выпадку правая частка павінна быць дапоўнена членам з вытворнай напружанасці электрычнага поля па часе - гл ніжэй). Тэарэма абвяшчае:
Гэтая тэарэма, асабліва ў замежнай або перакладной літаратуры, называецца таксама тэарэмай Ампера або законам Ампера пра цыркуляцыю (англ. Ampère's circuital law). Апошняя назва мае на ўвазе разгляд закона Ампера ў якасці больш фундаментальнага сцвярджэнні, чым закон Біё — Савара — Лапласа, які ў сваю чаргу разглядаецца ўжо ў якасці следства (што, у цэлым, адпавядае сучаснаму варыянту пабудовы электрадынамікі). Для агульнага выпадку (класічнай) электрадынамікі формула павінна быць дапоўненая ў правай частцы членам, якія змяшчаюць вытворную па часе ад электрычнага поля (гл. ураўненні Максвела, а таксама параграф «Абагульненне» ніжэй). У такім дапоўненым выглядзе яна ўяўляе сабой чацвёртае ураўненне Максвела ў інтэгральнай форме. Матэматычная фармулёўкаУ матэматычнай фармулёўцы для магнітастатыкы тэарэма мае [1] наступны выгляд[2]: Тут — вектар магнітнай індукцыі, — шчыльнасць току; інтэграванне злева вырабляецца па адвольным замкнёным контуры, справа — па адвольнай паверхні, нацягнутай на гэты контур. Дадзеная форма носіць назву інтэгральнай, паколькі ў відавочным выглядзе ўтрымлівае інтэграванне. Тэарэма можа быць таксама прадстаўлена ў дыферэнцыяльнай форме: Эквівалентнасць інтэгральнай і дыферэнцыяльнай формаў вынікае з тэарэмы Стокса. Прыведзеная вышэй форма справядлівая для вакууму. У выпадку ўжывання яе ў асяроддзі (рэчыве), яна будзе карэктная толькі ў выпадку, калі пад j разумець наогул усё токі, гэта значыць ўлічваць і «мікраскапічныя» токі, бягучыя в рэчыве, у тым ліку «мікраскапічныя» токі, бягучыя у абласцях памерамі парадку памеру малекулы (гл. дыямагнетыкі) і магнітныя моманты мікрачасцін (см.напрыклад ферамагнетыкі). Таму ў рэчыве, калі не грэбаваць яго магнітнымі ўласцівасцямі, часта зручна з поўнага току вылучыць ток намагнічанага (гл. звязаныя токі), выказаўшы яго праз велічыню намагнічанасць і увёўшы вектар напружанасці магнітнага поля Тады тэарэма пра цыркуляцыю запішацца ў форме дзе пад (у адрозненне ад ў формуле вышэй) маюцца на ўвазе т. зв. свабодныя токі, у якіх ток намагнічання выключаны (што бывае зручна практычна, паколькі - гэта звычайна ўжо ў сутнасці макраскапічныя токі, якія не звязаны з намагнічаныя рэчывы і якія ў прынцыпе няцяжка непасрэдна вымераць)[3]. У дынамічным выпадку - гэта значыць, у агульным выпадку класічнай электрадынамікі - калі палі змяняюцца ў часе (а ў асяроддзях пры гэтым змяняецца і іх палярызацыя) - і гаворка тады ідзе аб абагульненай тэарэме, у якую ўваходзяць , - усё сказанае вышэй адносіцца і да мікраскапічным токах, звязаных з зменамі палярызацыі дыэлектрыка. Гэтая частка токаў тады ўлічваецца ў члене . АбагульненнеАсноўным фундаментальным абагульненнем [4] тэарэмы з'яўляецца чацвёртае ураўненне Максвела. У інтэгральнай форме яно з'яўляецца прамым абагульненнем на дынамічны выпадак магнітостатычнай формулы, прыведзенай вышэй. Для вакууму [5]: для асяроддзя[6]: (Як бачым, формулы адрозніваюцца ад прыведзеных вышэй толькі адным дадатковым членам з хуткасцю змены электрычнага поля ў правай часткі). Дыферэнцыяльную форму гэтага ураўнення: (у гаусавай сістэме, для вакууму і асяроддзя адпаведна) - таксама можна пры жаданні лічыць варыянтам абагульнення тэарэмы пра цыркуляцыю магнітнага поля, паколькі яна, вядома, цесна звязана з інтэгральнай. Практычнае значэнне![]() Тэарэма пра цыркуляцыю гуляе ў магнітастатыцы прыблізна тую ж ролю, што і тэарэма Гауса ў электрастатыцы. У прыватнасці, пры наяўнасці пэўнай сіметрыі задачы, яна дазваляе проста знаходзіць велічыню магнітнага поля ва ўсім прасторы па зададзеных токах. Напрыклад, для вылічэння магнітнага поля ад бясконцага прамалінейнага правадніка з токам па закону Біё — Савара — Лапласа спатрэбіцца вылічыць невідавочны інтэграл, у той час як тэарэма пра цыркуляцыю (з улікам восевай сіметрыі задачы) дазваляе даць імгненны адказ:
Зноскі
|
Portal di Ensiklopedia Dunia