Элементарны электрычны зарадЭлементарны электрычны зарад — фундаментальная фізічная пастаянная, мінімальная порцыя (квант) электрычнага зарада. Роўны прыблізна 1,602176565(35)·10−19 Кл [1] ў Міжнароднай сістэме адзінак (СІ) (4,803529695(105)·10−10 адз. СГСЭ ў сістэме СГС). Цесна звязаны з пастаяннай тонкай структуры, якая апісвае электрамагнітнае ўзаемадзеянне[2]. Квантаванне электрычнага зарадаЛюбы назіраны ў эксперыменце электрычны зарад заўсёды кратны элементарнаму — такое меркаванне было выказана Б. Франклінам у 1752 годзе і ў далейшым неаднаразова правяралася эксперыментальна. Упершыню элементарны зарад быў эксперыментальна вымераны Мілікенам ў 1910 годзе[2]. Той факт, што электрычны зарад сустракаецца ў прыродзе толькі ў выглядзе цэлага ліку элементарных зарадаў, можна назваць квантаваннем электрычнага зарада. Пры гэтым у класічнай электрадынаміцы пытанне аб прычынах квантавання зарада не абмяркоўваецца, паколькі зарад з’яўляецца знешніх параметрам, а не дынамічнай зменнай. Здавальняючага тлумачэння, чаму зарад абавязаны квантавацца, пакуль не знойдзена, аднак ужо атрыманы шэраг цікавых назіранняў.
Дробны электрычны зарадЗ адкрыццём кваркаў стала зразумела, што элементарныя часціцы могуць валодаць дробным электрычным зарадам, напрыклад, 1⁄3 і 2⁄3 элементарнага. Аднак падобныя часціцы існуюць толькі ў звязаных станах, такім чынам, усе вядомыя свабодныя часціцы маюць электрычны зарад, кратны элементарнаму, хоць рассейванне на часціцах з дробным зарадам назіралася. Неаднаразовыя пошукі свабодных аб’ектаў з дробным электрычным зарадам, якія праводзяцца рознымі методыкамі на працягу доўгага часу, не далі выніку. Варта, аднак, адзначыць, што электрычны зарад квазічасціц можа быць не кратны цэламу. У прыватнасці, менавіта квазічасціцы з дробным электрычным зарадам адказваюць за дробны квантавы эфект Хола. Эксперыментальнае вызначэнне элементарнага электрычнага зарадуЗ дапамогай ліку Авагадра і пастаяннай ФарадэяКалі вядомыя лік Авагадра NA і пастаянная Фарадэя F, велічыню элементарнага электрычнага зарада можна вылічыць, выкарыстоўваючы формулу (Іншымі словамі, зарад аднаго моля электронаў, дзелены на лік электронаў у молі, роўны зараду аднаго электрона.) У параўнанні з іншымі, больш дакладнымі метадамі, гэты метад не дае высокай дакладнасці, але ўсё-такі дакладнасць яго досыць высокая. Ніжэй прыводзяцца падрабязнасці гэтага метаду. Значэнне пастаяннай Авагадра NA было ўпершыню прыблізна вымерана Іаганам Ёзэфам Лошмідтам , які ў 1865 годзе вызначыў на газакінетычнай аснове памер малекул паветра, што эквівалентна разліку ліку часціц ў зададзеным аб’ёме газу[3]. Сёння значэнне NA можа быць вызначана з вельмі высокай дакладнасцю з выкарыстаннем вельмі чыстых крышталёў (як правіла — крышталёў крэмнію) шляхам вымярэння адлегласці паміж атамамі з выкарыстаннем дыфракцыі рэнтгенаўскіх прамянёў; ці іншым спосабам, з дакладным вымярэннем шчыльнасці крышталя. Адсюль можна знайсці масу (m) аднаго атама, а так як малярная маса (M) вядомая, лік атамаў у малекуле можна разлічыць так: NA=M/m. Велічыня F можа быць вымерана непасрэдна з дапамогай законаў электролізу Фарадэя . Законы электролізу Фарадэя вызначаюць колькасныя суадносіны, заснаваныя на электрахімічных даследаваннях, апублікаваных Майклам Фарадэем ў 1834 годзе[4]. У эксперыменце электролізу існуе ўзаемна-адназначная адпаведнасць паміж колькасцю электронаў, якія праходзяць паміж анодам і катодам, і колькасцю іонаў, якія аселі на пласціне электрода. Вымяраючы змены масы анода і катода, а таксама агульны зарад, які праходзіць праз электраліт (які можа быць вымераны як інтэграл па часе ад электрычнага току), а таксама ўлічваючы малярныя масы іонаў, можна вывесці F. Абмежаванні на дакладнасць метаду заключаюцца ў вымярэнні F. Найлепшыя эксперыментальныя значэнні маюць адносную хібнасць 1,6 праміле, што прыкладна ў трыццаць разоў больш, чым у іншых сучасных метадах вымярэння і разліку элементарнага зарада. Вопыт МілікенаВядомы вопыт па вымярэнні зарада электрона e. Маленькая кропля алею ў электрычным полі будзе рухацца з такой скорасцю, што будуць скампенсаваныя сілы цяжару, сілы Стокса (вытворнай ад вязкасці паветра) і электрычныя сілы адштурхвання. Сілы цяжару і Стокса могуць быць разлічаны зыходзячы з памеру і скорасці падзення кроплі, адкуль могуць быць вызначаны і электрычныя сілы. Паколькі электрычныя сілы, у сваю чаргу, з’яўляюцца здабыткам электрычнага зарада і вядомага электрычнага поля, электрычны зарад кроплі алею можа быць дакладна вылічаны. Вымярэнне зарадаў розных кропель алею паказвае, што зарады з’яўляюцца цэлымі кратнымі адной невялікай велічыні, а менавіта e. З дапамогай эфекту Джозэфсана і канстанты фон КлітцынгаІншым дакладным метадам вымярэння элементарнага зарада з’яўляецца вылічэнне яго з назірання двух эфектаў квантавай механікі: эфекту Джозэфсана, пры якім узнікаюць ваганні напружання ў пэўнай звышправоднай структуры, і квантавага эфекту Хола, эфекту квантавання холаўскага супраціўлення або праводнасці двухмернага электроннага газу ў моцных магнітных палях і пры нізкіх тэмпературах. Пастаянная Джозэфсана дзе h — пастаянная Планка, можа быць вымерана непасрэдна з дапамогай эфекту Джозэфсана. можа быць вымерана непасрэдна з дапамогай квантавага эфекту Хола. З гэтых дзвюх канстант можна вылічыць велічыню элементарнага зарада: Гл. таксамаЗноскі
|
Portal di Ensiklopedia Dunia