熱力学第二法則
熱力学第二法則(ねつりきがくだいにほうそく、英: second law of thermodynamics)は、熱力学において可能な操作を定める法則である。 熱力学第二法則によって、「可逆過程」「不可逆過程」および「不可能な過程」が定義される。 法則の表現この法則には様々な表現があるが、全て同値である。
オストヴァルトの原理はトムソンの法則と全く同じ主張をしている。クラウジウスの法則とトムソンの法則は、それぞれの反例となるサイクルを認めると、カルノーサイクルとの合成サイクルを作ることにより互いの反例が生じてしまう。つまり対偶を示すことにより同値であることが示せる。 クラウジウスの不等式は、カルノーサイクルを連結し合成サイクルを作ることによって、トムソンの法則と、それより導かれるカルノーの定理を用いて示せる。また、クラウジウスの不等式において n = 1 としたものは、トムソンの法則そのものである。 熱力学では伝統的にはクラウジウスの不等式を用いてエントロピーを定義し、それが増大することが証明されるが、エントロピーを他の方法を用いて定義し、かつエントロピー増大則を原理として認めれば、他の諸原理を示すことができる。 歴史マックスウェルの悪魔と情報理論→詳細は「マクスウェルの悪魔」を参照
マクスウェルの悪魔のパラドックスは、1867年ごろに提唱されて以降、長年物理学者の頭を悩ませてきた。しかし2008年、情報理論と非平衡統計力学を融合させた理論(情報熱力学)が登場したことによって、悪魔が情報処理を行っており、n(ビット)の情報を消去するたびに k ln(n)(J/K)のエントロピーが増大しているということが明らかとなった。 これにより、熱力学第二法則との矛盾はひとまず解消された(という扱いになっている)。 なお、パラドックスの反証の際に用いられたランダウアーの原理は、特殊な形状のメモリについては既にジャルジンスキー等式を用いて証明されているが、一般的な場合については証明されていない。 ボルツマン
理論的な証明2017年9月6日、東京大学大学院工学系研究科助教・伊與田英輝らのグループは、ミクロな世界の基本法則である量子力学から出発して、熱力学第二法則を理論的に導出することに成功したと発表した[4][5]。 これにより、18世紀ごろに生まれた第二種永久機関に関する論争に、改めて終止符が打たれた。 脚注
関連文献
関連項目外部リンク
|
Portal di Ensiklopedia Dunia