^Koev, P., & Edelman, A. (2008). Hypergeometric function of a matrix argument. Department of Mathematics, Massachusetts Institute of Technology (April 11 2008). URL https://math.mit.edu/~plamen/software/mhgref.html.
^Gross, K. I., & Richards, D. S. P. (1987). Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Transactions of the American Mathematical Society, 301(2), 781-811.
^Abdalla, M. (2018). Special matrix functions: Characteristics, achievements and future directions. Linear and Multilinear Algebra, 1-28.
^Trench, W. F. (1995). Invertibly convergent infinite products of matrices, with applications to difference equations. Computers & Mathematics with Applications, 30(11), 39-46.
^Leach, B. G. (1969). Bessel functions of matrix argument with statistical applications (Doctoral dissertation).
^James, A. T. (1975). Special functions of matrix and single argument in statistics. In Theory and Application of Special Functions (pp. 497-520). en:Academic Press.
^Shinya Miyajima, Verified computation for the matrix Lambert W function, Applied Mathematics and Computation, Volume 362, Pages 1-15, December 2019.
類似
^ abSalem, A. (2014). The basic Gauss hypergeometric matrix function and its matrix -difference equation. Linear and Multilinear Algebra, 62(3), 347-361.
^ abcSalem, A. (2012). On a -gamma and a -beta matrix functions. Linear and Multilinear Algebra, 60(6), 683-696.
^Salem, A. (2016). The -Laguerre matrix polynomials. SpringerPlus, 5(1), 550.
^Salem, A. (2017). On the Discrete -Hermite Matrix Polynomials. International Journal of Applied and Computational Mathematics, 3(4), 3147-3158.
^Dwivedi, R., & Sahai, V. (2019). On the matrix versions of -zeta function, -digamma function and -polygamma function. Asian-European Journal of Mathematics.
^Dwivedi, R., & Sahai, V. (2019). On the basic hypergeometric matrix functions of two variables. Linear and Multilinear Algebra, 67(1), 1-19.
ODEの数値計算
^Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. en:Acta Numerica, 19, 209-286.
^Al-Mohy, A. H., & Higham, N. J. (2011). Computing the action of the matrix exponential, with an application to exponential integrators. en:SIAM journal on scientific computing, 33(2), 488-511.
^Del Buono, N., & Lopez, L. (2003, June). A survey on methods for computing matrix exponentials in numerical schemes for ODEs. In International Conference on Computational Science (pp. 111-120). Springer, Berlin, Heidelberg.
^A Note on Inexact Rational Krylov Method for Evolution Equations by Yuka Hashimoto and Takashi Nodera (2016), research report by the Department of Mathematics, Faculty of Science and Technology, Keio University.
^Hashimoto, Y., & Nodera, T. (2016). Inexact shift-invert Arnoldi method for evolution equations. ANZIAM Journal, 58, 1-27.
^Hashimoto, Y., & Nodera, T. (2016). Shift-invert rational Krylov method for evolution equations. ANZIAM Journal, 58, 149-161.
^Sidje, R. B. (1998). Expokit: A software package for computing matrix exponentials. ACM Transactions on Mathematical Software (TOMS), 24(1), 130-156.
^Yuka Hashimoto,Takashi Nodera, Double-shift-invert Arnoldi method for computing the matrix exponential, Japan J. Indust. Appl. Math, pp727-738, 2018.
^ abBini, D. A., Higham, N. J., & Meini, B. (2005). Algorithms for the matrix pth root. Numerical Algorithms, 39(4), 349-378.
^ abDeadman, E., Higham, N. J., & Ralha, R. (2012, June). Blocked Schur algorithms for computing the matrix square root. In International Workshop on Applied Parallel Computing (pp. 171-182). Springer, Berlin, Heidelberg.
^F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang A cost-efficient variant of the incremental Newton iteration for the matrix pth root, J. Math. Res. Appl. 37 (2017), pp. 97-106.
^S. Mizuno, Y. Moriizumi, T. S. Usuda, T. Sogabe, An initial guess of Newton's method for the matrix square root based on a sphere constrained optimization problem, JSIAM Letters, 8 (2016), pp.17-20.
^ abHargreaves, G. I., & Higham, N. J. (2005). Efficient algorithms for the matrix cosine and sine. Numerical Algorithms, 40(4), 383-400.
^ abHale, N., Higham, N. J., & Trefethen, L. N. (2008). Computing , and related matrix functions by contour integrals. en:SIAM Journal on Numerical Analysis, 46(5), 2505-2523.
^Tatsuoka, F., Sogabe, T., Miyatake, Y., & Zhang, S. L. (2019). Algorithms for the computation of the matrix logarithm based on the double exponential formula. arXiv preprint arXiv:1901.07834.
^Koev, P., & Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. en:Mathematics of Computation, 75(254), 833-846.
^Hashiguchi, H., Numata, Y., Takayama, N., & Takemura, A. (2013). The holonomic gradient method for the distribution function of the largest root of a Wishart matrix. Journal of Multivariate Analysis, 117, 296-312.
参考文献
Higham, N. J. (2006). Functions of matrices. Manchester Institute for Mathematical Sciences, School of Mathematics, The University of Manchester.
Higham, N. J. (2002). The matrix computation toolbox.
A Survey of the Matrix Exponential Formulae with Some Applications (2016), Baoying Zheng, Lin Zhang, Minhyung Cho, and Junde Wu. J. Math. Study Vol. 49, No. 4, pp. 393-428.