計算機援用証明
計算機援用証明とは、コンピュータによって少なくとも一部が生成された数学的証明である[1]。 今日における計算機援用証明のほとんどは数学的定理に対するしらみつぶし法の実装である。具体的には、膨大で複雑な計算をコンピュータによって実行し、計算結果が与えられた定理の主張を裏付けることを示す試みである。1976年に示された四色定理が計算機援用証明によって示された最初の定理である。 計算機援用証明は人工知能の分野でも使われ、簡明かつ陽的で新しい(数学の)定理の証明を作り出すことが目指された。このような自動定理証明機はいくつかの新しい結果を生み出し、既存の定理に対しても新しい証明を発見した。 手法数学的証明の中でコンピュータを用いる方法の一つとして精度保証付き数値計算が挙げられる。これは数学的厳密さを保持したうえで数値計算を行うことを意味する。数値的プログラムの出力が与えられた数学的問題の解を含むことを示すために集合値演算などを使用する。これは区間演算などによって丸め誤差と打切り誤差を包含、伝播させることでなされる。より具体的には、数値計算を四則演算に簡略化する。計算機では四則演算の結果は計算精度に応じて丸められる。だが、四則演算の結果に関する上界と下界を与える区間を作ることができる。そして数を区間に置き換え、四則演算を計算機で表現可能な数で構成した区間で行う[1]。 計算機援用証明で示された定理
出典
参考文献
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia