^Temam, R. (2001). Navier-Stokes equations: theory and numerical analysis (Vol. 343). American Mathematical Soc..
^Marion, M., & Temam, R. (1998). Navier-Stokes equations: Theory and approximation. Handbook of numerical analysis, 6, 503-689.
^Girault, V., & Raviart, P. A. (2012). Finite element methods for Navier-Stokes equations: theory and algorithms (Vol. 5). Springer Science & Business Media.
^Moser, R. D., Moin, P., & Leonard, A. (1983). A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. Journal of Computational Physics, 52(3), 524-544.
^Monk, P. (2003). Finite element methods for Maxwell's equations. Oxford University Press.
^Makridakis, C. G., & Monk, P. (1995). Time-discrete finite element schemes for Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis, 29(2), 171-197.
^Cockburn, B., Li, F., & Shu, C. W. (2004). Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. Journal of Computational Physics, 194(2), 588-610.
^Constantin, P., & Foias, C. (1988). Navier-stokes equations. University of Chicago Press.
^Foias, C., Manley, O., Rosa, R., & Temam, R. (2001). Navier-Stokes equations and turbulence (Vol. 83). Cambridge University Press.
^Brezinski, C., & Wuytack, L. (2012). Numerical analysis: Historical developments in the 20th century. Elsevier.
Landau, Rubin H.; Páez, Manuel J.; Bordeianu, Cristian C. (2015): Computational Physics: Problem Solving with Python, John Wiley & Sons.
Landau, Rubin H.; Paez, Jose; Bordeianu, Cristian C. (2011): A survey of computational physics: introductory computational science. Princeton University Press.