가우스-보네 정리가우스-보네 정리(Gauss-Bonnet theorem, -定理) 또는 가우스-보네 공식(Gauss-Bonnet formula, -公式)은 미분기하학의 정리로, 어떤 곡면의 가우스 곡률과 오일러 지표를 연결한다. 가우스 곡률은 곡면의 핵심적인 기하학적 정보이며, 오일러 지표는 곡면의 핵심적인 위상수학적 정보이기 때문에, 이 둘의 연관성은 수학에서 중요하게 여겨진다. 독일의 수학자 카를 프리드리히 가우스는 이 정리의 내용을 알고 있었으나 출판하지는 않았으며, 프랑스의 수학자 피에르 오시앙 보네(Pierre Ossian Bonnet)가 특수한 경우에 대한 논문을 1848년에 출판하여 이 두 사람의 이름이 붙어 있다. 공식화M은 경계가 인 콤팩트한 2차원 리만 다양체라 하자. K를 M의 가우스 곡률, kg을 M의 측지적 곡률(geodesic curvature)이라 하면, 다음 적분식이 성립하는데 이를 가우스-보네 정리라 한다. 여기서 dA는 곡면의 면적소, ds는 경계선의 길이 요소, χ(M)은 M의 오일러 지표이다. 만약 경계가 없는 곡면이라면 좌변의 두번째 항은 사라지고, 가 곧바로 성립한다. 조합론적 가우스-보네 정리조합론에서도 여러 가우스-보네 정리의 유사 형태가 있다. 예로 M을 2차원 유한 준다양체(pseudomanifold), χ(M)을 M의 오일러 지표, χ(v)를 꼭짓점 v를 포함하는 삼각형의 수라 하면 다음 식이 성립한다. 같이 보기참고 문헌
외부 링크 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia