수렴판정법
수학에서 수렴판정법(收斂判定法, convergence test)은 무한급수의 수렴성을 판단하는 방법이다. 구체적으로, 급수가 수렴, 절대수렴, 조건수렴, 또는 발산할 충분, 필요, 또는 필요충분조건을 제시한다. 함수항급수의 점별수렴, 균등수렴 여부를 판정하거나 수렴역을 구하는 방법도 제공한다. 개요무한급수가 발산하는지 여부를 판단하는 가장 쉬운 방법은 급수를 구성하고 있는 수열의 n번째 항인 an이 n이 무한으로 갈 때 0으로 수렴하는지 여부를 체크하면 된다. 만약 0으로 가지 않는다면, 이 급수는 발산한다는 사실을 쉽게 확인할 수 있다. 하지만 그 극한값이 0으로 간다고 해도, 이 급수가 항상 수렴하는 것은 아니다. 다음의 급수의 경우 수열의 값은 0으로 수렴하지만, 급수는 수렴하지 않는다. 급수를 구성하고 있는 각 수열들이 0이 아닌 항으로만 이루어져 있더라도 수렴할 수도 있다. 제논의 역설로도 확인할 수 있는 수렴하는 무한급수의 예는 다음과 같다. 수직선에서 이를 눈으로 확인해볼 수 있다. 수직선에서 에 해당하는 부분에 점을 찍어보면, 언제나 마지막에 찍은 점과 그 앞에 찍은 점 사이의 거리가, 1과 마지막에 찍은 점과의 거리와 같다는 사실을 알 수 있다. 하지만 이런 논리로는 이 급수의 부분합이 항상 1보다 작다는 사실을 설명할 뿐, 무한급수의 합이 1이 된다는 사실을 증명해주지는 못한다. 주로 쓰이는 판정법들기타 판정법들
같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia