파르스발 항등식함수해석학에서, 파르스발 항등식(Parseval恒等式)은 푸리에 급수의 수렴성에 관한 중요한 결과이다. 수학자 마르크앙투안 파르스발의 이름을 땄다. 기하학적 관점에서 파르스발 항등식은 내적 공간에서의 피타고라스 정리로 볼 수 있다. 가 힐베르트 공간이라 하고, 가 의 정규 직교 기저라 하자. 그러면 임의의 에 대해 다음이 성립한다. 피타고라스 정리에 따르면 벡터의 길이의 제곱은 정규 직교 기저로 나타낸 성분들의 제곱의 합과 같은데, 파르스발 항등식은 이를 일반화한 것이라 할 수 있다. 보다 일반적으로, 파르스발 항등식은 가 내적 공간이고 의 선형생성이 에서 조밀한 경우에도 성립한다. 가 조밀하지 않은 경우 등호가 성립하지 않을 수도 있으며, 대신에 등호를 부등호 ≤로 바꾼 베셀 부등식이 성립한다. 푸리에 급수구체적인 예로, 힐베르트 공간 와 정규 직교 기저 를 생각해 보자. 함수 의 푸리에 계수를 라 하면, 파르스발 항등식에 의해 다음이 성립한다. 외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia