함수해석학함수해석학(函數解析學, 영어: functional analysis)이란 벡터 공간과 연산자들에 대해 다루는 해석학의 한 분야이다. 역사적으로 함수 공간에 대해서 연구하기 시작한 것이 그 기원이며 특히 푸리에 변환, 미분 방정식, 적분 방정식에서 함수의 변환에 대한 연구들이 그 예이다. 함수해석학에서 큰 업적을 남긴 수학자로는 스테판 바나흐가 있다. 노름 벡터 공간현대에는 함수해석학을 실수나 복소수로 구성된 완비 노름 공간을 주로 다룬다. 이러한 공간을 바나흐 공간이라고 하는데, 그 대표적인 예로 힐베르트 공간이 있다. 힐베르트 공간에서는 노름이 내적을 이용해서 생각할 수 있다. 이러한 공간들은 여러 분야에서 매우 중요하게 사용된다. 예를 들어 양자역학의 공식들을 만들 때 사용한다. 함수해석학에서는 더 일반적인 공간인 위상 벡터 공간에 대해서도 연구한다. 같이 보기참고 문헌
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia