ਗੈਲੀਲੀਅਨ ਇਨਵੇਰੀਅੰਸ
ਗੈਲੀਲੀਅਨ ਇਨਵੇਰੀਅੰਸ ਜਾਂ ਗੈਲੀਲੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ ਸਾਰੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਗਤੀ ਦੇ ਨਿਯਮ ਇੱਕੋ ਜਿਹੇ ਹੁੰਦੇ ਹਨ। ਸਥਿਤ ਵਿਲੌਸਿਟੀ ਉੱਤੇ ਯਾਤਰਾਗਤ ਇੱਕ ਜਹਾਜ ਦੀ ਉਦਾਹਰਨ ਵਰਤਦੇ ਹੋਏ ਆਪਣੀ ਡਾਇਲੌਗ ਕਨਸਰਨਿੰਗ ਦੀ ਟੂ ਚੀਫ ਵਰਲਡ ਸਿਸਟਮਜ਼ ਵਿੱਚ 1632 ਨੂੰ ਇਸ ਸਿਧਾਂਤ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲਾ ਗੈਲੀਲੀਓ ਗੈਲੀਲੀ ਪਹਿਲਾ ਇਨਸਾਨ ਸੀ; ਬਗੈਰ ਰੋਕਟੋਕ, ਕਿਸੇ ਸੁਚਾਰੂ ਸਾਗਰ ਉੱਤੇ; ਪ੍ਰਯੋਗ ਕਰ ਰਿਹਾ ਕੋਈ ਔਬਜ਼ਰਵਰ ਡੈਕ ਦੇ ਥੱਲਿਓਂ ਇਹ ਦੱਸ ਨਹੀਂ ਸਕੇਗਾ ਕਿ ਜਹਾਜ ਗਤੀਸ਼ੀਲ ਹੈ ਜਾਂ ਠਹਿਰਿਆ ਹੋਇਆ ਹੈ। ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਖਾਸਕਰ ਕੇ, ਸ਼ਬਦ ਗੈਲੀਲੀਅਨ ਇਨਵੇਰੀਅੰਸ ਅੱਜਕਲ ਆਮ ਤੌਰ 'ਤੇ ਨਿਊਟੋਨੀਅਨ ਮਕੈਨਿਕਸ ਪ੍ਰਤਿ ਲਾਗੂ ਕੀਤੇ ਜਾਣ ਦੇ ਤੌਰ 'ਤੇ ਇਸ ਸਿਧਾਂਤ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਨਿਊਟਨ ਦੇ ਨਿਯਮ ਇੱਕ ਦੂਜੀ ਨਾਲ ਸਬੰਧਤ ਸਾਰੀਆੰ ਫ੍ਰੇਮਾਂ ਵਿੱਚ ਇੱਕ ਗੈਲੀਲੀਅਨ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਰਾਹੀਂ ਸਹੀ ਲਾਗੂ ਰਹਿੰਦੇ ਹਨ। ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, ਇੱਕ ਦੂਜੀ ਨਾਲ ਅਜਿਹੀ ਕਿਸੇ ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਰਾਹੀਂ ਸਬੰਧਤ ਸਾਰੀਆਂ ਫ੍ਰੇਮਾਂ ਇਨ੍ਰਸ਼ੀਅਲ ਹੁੰਦੀਆਂ ਹਨ (ਜਿਸਦਾ ਅਰਥ ਹੈ, ਗਤੀ ਦੀ ਨਿਊਟਨ ਦੀ ਇਕੁਏਸ਼ਨ ਇਹਨਾਂ ਫ੍ਰੇਮਾਂ ਵਿੱਚ ਪ੍ਰਮਾਣਿਤ ਰਹਿੰਦੀ ਹੈ)। ਇਸ ਸੰਦ੍ਰਭ ਅੰਦਰ ਇਸ ਨੂੰ ਕਦੇ ਕਦੇ ਨਿਊਟੋਨੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਤੋਂ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤਾਂ ਵਿਚਕਾਰ ਇਹ ਨਿਯਮ ਹਨ:
ਗੈਲੀਲੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ ਇਨ੍ਰਸ਼ੀਅਲ ਫ਼੍ਰੇਮਾਂ S ਅਤੇ S’ ਤੇ ਵਿਚਾਰ ਕਰੋ। S ਅੰਦਰਲੀ ਕੋਈ ਭੌਤਿਕੀ ਘਟਨਾ ਦੇ ਪੁਜੀਸ਼ਨ ਨਿਰਦੇਸ਼ਾਂਕ r = (x, y, z) ਅਤੇ ਸਮਾਂ t, ਫ਼ਰੇਮ S ਵਿੱਚ ਹੋਣਗੇ, ਅਤੇ r' = (x' , y' , z' ) ਅਤੇ ਸਮਾਂ t' ਫ਼੍ਰੇਮ S' ਵਿੱਚ ਹੋਣਗੇ। ਉੱਪਰਲੇ ਦੂਜੇ ਸਵੈ-ਸਿਧਾਂਤ ਦੁਆਰਾ, ਕਲੋਕ ਨੂੰ ਦੋਵੇਂ ਫ੍ਰੇਮਾੰ ਵਿੱਚ t = t' ਮੰਨਦੇ ਹੋਏ ਸਿੰਕ੍ਰੋਨਾਇਜ਼ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਮੰਨ ਲਓ ਕਿ S' ਫ੍ਰੇਮ S ਪ੍ਰਤਿ ਵਿਲੌਸਿਥੀ v ਨਾਲ ਗਤੀਸ਼ੀਲ ਹੈ। ਕਿਸੇ ਬਿੰਦੂ ਚੀਜ਼ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸਦੀ ਪੁਜੀਸ਼ਨ ਫੰਕਸ਼ਨਾਂ r' (t) ਰਾਹੀਂ ਫ੍ਰੇਮ S' ਵਿੱਚ ਅਤੇ r(t) ਫ੍ਰੇਮ S ਵਿੱਚ ਦਿੱਤੀ ਜਾਂਦੀ ਹੋਵੇ। ਅਸੀਂ ਦੇਖਦੇ ਹਾਂ ਕਿ ਕਣ ਦੀ ਵਿਲੌਸਿਟੀ ਪੁਜੀਸ਼ਨ ਦੇ ਸਮਾਂ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਮਿਲਦੀ ਹੈ: ਇੱਕ ਹੋਰ ਡਿਫ੍ਰੈਂਟੀਏਸ਼ਨ ਦੋਵੇਂ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਐਕਸਲ੍ਰੇਸ਼ਨ ਦਿੰਦੀ ਹੈ: ਇਹ ਇੰਨਾ ਸਰਲ ਪਰ ਮਹੱਤਵਪੂਰਨ ਨਤੀਜਾ ਹੈ ਜਿਸਦਾ ਭਾਵ ਗੈਲੀਲੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਹੈ। ਪੁੰਜ ਨੂੰ ਸਾਰੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਅੰਦਰ ਇਨਵੇਰੀਅੰਟ ਮੰਨਦੇ ਹੋਏ, ਉੱਪਰਲੀ ਸਮੀਕਰਨ ਮਕੈਨਿਕਸ ਦੇ ਨਿਊਟਨ ਦੇ ਨਿਯਮ ਦਿਖਾਉਂਦੀ ਹੈ, ਜੇਕਰ ਇੱਕ ਫ੍ਰੇਮ ਵਿੱਚ ਪਅਮਾਣਿਤ ਹੋਣ, ਤਾਂ ਸਭ ਫ੍ਰੇਮਾਂ ਲਈ ਵੀ ਜਰੂਰ ਹੀ ਲਾਗੂ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ।[1] ਪਰ ਇਹ ਸ਼ੁੱਧ ਸਪੇਸ ਅੰਦਰ ਹੀ ਲਾਗੂ ਹੁੰਦੇ ਮੰਨੇ ਜਾਂਦੇ ਹਨ, ਇਸਲਈ ਗੈਲੀਲੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਲਾਗੂ ਰਹਿੰਦੀ ਹੈ। ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਬਨਾਮ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀਨਿਊਟੋਨੀਅਨ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਰਮਿਆਨ ਇੱਕ ਤੁਲਨਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਦੀਆਂ ਮਾਨਤਾਵਾਂ ਅਤੇ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਇਹ ਹਨ:
ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਤੋਂ ਸਬੰਧਤ ਕਥਨ ਇਹ ਹਨ:
ਧਿਆਨ ਦੇਓ ਕਿ ਦੋਵੇਂ ਥਿਊਰੀਆਂ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮਾਂ ਦੀ ਹੋਂਦ ਨੂੰ ਮੰਨਦੀਆਂ ਹਨ। ਅਭਿਆਸ ਵਿੱਚ, ਫ੍ਰੇਮਾਂ ਦਾ ਅਕਾਰ ਜਿਸ ਵਿੱਚ ਉਹ ਲਾਗੂ ਰਹਿੰਦੀਆਂ ਹਨ ਵਿਸ਼ਾਲ ਤੌਰ 'ਤੇ ਫਰਕ ਵਾਲਾ ਹੁੰਦਾ ਹੈ ਜੋ ਗਰੈਵੀਟੇਸ਼ਨਲ ਟਾਈਡਲ ਬਲਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ। ਢੁਕਵੇਂ ਸੰਦ੍ਰਭ ਵਿੱਚ, ਇੱਕ ਲੋਕਲ ਨਿਊਟੋਨੀਅਨ ਇਨ੍ਰਸ਼ੀਅਲ ਫ੍ਰੇਮ, ਜਿੱਥੇ ਨਿਊਟਨ ਦੀ ਥਿਊਰੀ ਇੱਕ ਚੰਗਾ ਆਦਰਸ਼ ਬਣੀ ਰਹਿੰਦੀ ਹੈ, ਮੋਟੇ ਤੌਰ 'ਤੇ, 107 ਪ੍ਰਕਾਸ਼ ਸਾਲਾਂ ਤੱਕ ਵਧਦੀ ਹੈ। ਇਹ ਵੀ ਦੇਖੋਨੋਟਸ ਅਤੇ ਹਵਾਲੇ
|
Portal di Ensiklopedia Dunia