Автокорреляционная функция

График 100 случайных величин, суммированный с синусоидальным сигналом малой амплитуды. График автокорреляционной функции позволяет увидеть периодичность в ряде данных.

Автокорреляционная функция (АКФ) — зависимость взаимосвязи между функцией (сигналом) и её сдвинутой по аргументу функции копией от величины сдвига.

Для детерминированных сигналов автокорреляционная функция (АКФ) сигнала определяется интегралом:

и показывает связь сигнала (функции ) с копией самого себя, смещённого на величину . Звёздочка означает комплексное сопряжение.

Для случайных процессов АКФ случайного процесса имеет вид[1][2]:

,
где  — математическое ожидание,
, — значения случайных величин и в моменты времени и ,
— двумерная плотность вероятности случайных величин и .

Также в литературе АКФ случайного процесса определяют по формуле:

В некоторых источниках эту функцию называют автоковариационной функций[3].

Если исходная функция строго периодическая, то на графике автокорреляционной функции тоже будет строго периодическая функция. Таким образом, из этого графика можно судить о периодичности исходной функции, а, следовательно, и о её частотных характеристиках. Автокорреляционная функция применяется для анализа сложных колебаний, например, электроэнцефалограммы человека.

Применение в технике

Корреляционные свойства кодовых последовательностей, используемых в широкополосных системах, зависят от типа кодовой последовательности, её длины, частоты следования её символов и от её посимвольной структуры.

Изучение автокорреляционной функции играет важную роль при выборе кодовых последовательностей с точки зрения наименьшей вероятности установления ложной синхронизации.

Другие применения

Автокорреляционная функция играет важную роль в математическом моделировании и анализе временных рядов, показывая характерные времена для исследуемых процессов[4]. В частности, циклам в поведении динамических систем соответствуют максимумы автокорреляционной функции некоторого характерного параметра.

См. также

Примечания

Ссылки

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya