В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд)[1], например 0b101 или соответственно &101.
В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 1012 произносится «один ноль один».
Натуральные числа
Натуральное число, записываемое в двоичной системе счисления как , имеет значение:
Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления , имеет величину:
В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде.
Дробные числа
Дробное число, записываемое в двоичной системе счисления как , имеет величину:
где:
— количество цифр дробной части числа,
— значения цифр из множества .
Сложение, вычитание и умножение двоичных чисел
Таблица сложения
+
0
1
0
0
1
1
1
0 (перенос 1 в старший разряд)
Таблица вычитания
–
0
1
0
0
1
1
1 (заём из старшего разряда)
0
Пример сложения «столбиком» (десятичное выражение 1410 + 510 = 1910 в двоичном виде выглядит как 11102 + 1012 = 100112):
+
1
1
1
0
1
0
1
1
0
0
1
1
Таблица умножения
×
0
1
0
0
0
1
0
1
Пример умножения «столбиком» (десятичное выражение 1410 * 510 = 7010 в двоичном виде выглядит как 11102 * 1012 = 10001102):
×
1
1
1
0
1
0
1
+
1
1
1
0
1
1
1
0
1
0
0
0
1
1
0
Преобразование чисел
Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:
1024
512
256
128
64
32
16
8
4
2
1
Начиная с цифры 1 все цифры умножаются на два.
Точка, которая стоит после 1, называется двоичной точкой.
Преобразование двоичных чисел в десятичные
Допустим, дано двоичное число 1100012. Для перевода в десятичное запишите его как сумму по разрядам следующим образом:
Можно записать это в виде таблицы следующим образом:
512
256
128
64
32
16
8
4
2
1
1
1
0
0
0
1
+32
+16
+0
+0
+0
+1
Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.
Таким образом, двоичное число 1100012 равнозначно десятичному 4910.
Преобразование дробных двоичных чисел в десятичные
Нужно перевести число 1011010,1012 в десятичную систему. Запишем это число следующим образом:
Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.
Например, двоичное число 10110112 переводится в десятичную систему так:
Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться делением с остатком:
19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1
Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т. д. В результате получаем число 19 в двоичной записи: 10011.
Преобразование дробных десятичных чисел в двоичные
Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:
Дробь умножается на основание двоичной системы счисления (2);
В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.
Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.
Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:
Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора,
В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде. Например, число −510 может быть записано как −1012 но в 32-битном компьютере будет храниться как 111111111111111111111111111110112.
Обобщения
Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Число может быть записано в двоичном коде, а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование, в котором десятичные цифры записываются в двоичном виде, а система счисления — десятичная.
История
Полный набор из 8 триграмм и 64 гексаграмм, аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстахкниги Перемен. Порядок гексаграмм в книге Перемен, расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке. Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке.
Индийский математик Пингала (200 год до н. э.) разработал математические основы для описания поэзии с использованием первого известного применения двоичной системы счисления[2][3].
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[4], так и не числовых записей в двоичной системе кодирования[5]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[6]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта, как двойная запись[7].
В 1605 годуФренсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам[8] (см. Шифр Бэкона).
Современная двоичная система была полностью описана Лейбницем в XVII веке в работе Explication de l’Arithmétique Binaire[9]. В системе счисления Лейбница были использованы цифры 0 и 1, как и в современной двоичной системе. Как человек, увлекающийся китайской культурой, Лейбниц знал о книге Перемен и заметил, что гексаграммы соответствуют двоичным числам от 0 до 111111. Он восхищался тем, что это отображение является свидетельством крупных китайских достижений в философской математике того времени[10].
В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике, которая в настоящее время известна как Булева алгебра или алгебра логики. Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
В 1937 годуКлод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в MIT, в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника.
В ноябре 1937 годаДжордж Штибиц, впоследствии работавший в Bell Labs, создал на базе реле компьютер «Model K» (от англ. «Kitchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами. Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа. Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман, Джон Мокли и Норберт Винер, впоследствии писавшие об этом в своих мемуарах.
↑
Sanchez, Julio; Canton, Maria P. (2007), Microcontroller programming: the microchip PIC, Boca Raton, Florida: CRC Press, p. 37, ISBN0-8493-7189-9
↑W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
↑Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3.