Длина́ криво́й (или, что то же, длина́ дуги́ криво́й) — числовая характеристика протяжённости этой кривой[1]. Исторически вычисление длины кривой называлось спрямлением кривой (от лат.rectificatio, спрямление).
Например, пусть непрерывная кривая в трёхмерном пространстве задана параметрически:
(1)
где , все три функции непрерывны и нет кратных точек, то есть разным значениям соответствуют разные точки кривой. Построим всевозможные разбиения параметрического интервала на отрезков: . Соединение точек кривой отрезками прямых даёт ломаную линию. Тогда длина отрезка кривой определяется как точная верхняя грань суммарных длин всех таких ломаных[2].
Длина дуги циклоиды (s) в зависимости от её параметра (θ)
Связанные определения
Всякая кривая имеет длину, конечную или бесконечную. Если длина кривой конечна, то говорят, что кривая спрямляемая, в противном случае — неспрямляемая. Снежинка Коха — классический пример ограниченной, но неспрямляемой кривой; более того, любая, сколь угодно малая её дуга неспрямляема[3].
Параметризация кривой длиной её дуги называется естественной.
Кривая есть частный случай функции из отрезка в пространство. Вариация функции, определяемая в математическом анализе, является обобщением длины кривой (см. ниже).
Формула подразумевает, что и длина отсчитывается в сторону возрастания параметра t. Если рассматриваются два разных направления отсчёта длины от точки кривой, то часто удобно приписать дуге на одном из этих направлений знак минус.
В n-мерном случае вместо (2) имеем аналогичную формулу:
.
Если плоская кривая задана уравнением где — гладкая функция на отрезке значений параметра , то длина кривой определяется по формуле:
В полярных координатах :
Формула Крофтона позволяет связать длину кривой на плоскости и интеграл числа её пересечений с прямыми по естественной мере на пространстве прямых.
История
Задача спрямления оказалась гораздо сложнее, чем вычисление площади, и в античные времена единственное успешное спрямление было выполнено для окружности. Декарт даже высказывал мнение, что «отношение между прямыми и кривыми неизвестно и, даже, думаю, не может быть познано людьми»[4][5].
В более общем случае произвольного метрического пространства длиной кривой называется вариация задающего кривую отображения, то есть длина кривой определяется согласно формуле:
где верхняя грань берётся, как и ранее, по всем разбиениям отрезка .
↑Декарт Р. Геометрия. С приложением избранных работ П. Ферма и переписки Декарта / Перевод, примечания и статьи А. П. Юшкевича. — М.—Л.: Гостехиздат, 1938. — С. 49. — 297 с. — (Классики естествознания).
↑Оригинал цитаты на французском языке: «la proportion qui est entre les droites et les courbes n’étant pas connue, et même, je crois, ne le pouvant être par les hommes», см. Descartes R.Discours de la méthode.... — 1637. — С. 340. Архивировано 4 апреля 2017 года.