Прямая, наряду с окружностью, относится к числу древнейших геометрических фигур. Античные геометры считали эти две кривые «совершенными» и поэтому признавали только построения с помощью циркуля и линейки. Евклид описал линию как «длину без ширины», которая «равно лежит на всех своих точках»[3].
Аналоги прямых могут быть определены также в некоторых типах неевклидовых пространств. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то отрезок прямой можно определить как самую короткую кривую, соединяющую эти точки. Например, в римановой геометрии роль прямых играют геодезические линии, которые являются кратчайшими; на сфере кратчайшими являются дуги больших кругов[4].
где и — произвольные постоянные а вычисляется как произведение и с обратным знаком учитывая что уравнение отличается на множитель, причём постоянные и не равны нулю одновременно.
Приводя уравнение с целью получения известной а именно домножая на ненулевой коэффициент:
где новые величины и являются координатами точек на осях координат и через которые проходит прямая.
Вычисление и происходит так: для , , для , .
При прямая параллельна оси , при — параллельна оси .
Вектор с координатами называется нормальным вектором, он перпендикулярен прямой.
В этом виде невозможно представить прямую, параллельную оси (Иногда в этом случае формально говорят, что угловой коэффициент «обращается в бесконечность».)
Получение уравнения прямой в отрезках
Уравнение прямой в отрезках
Уравнение прямой линии, пересекающей ось в точке и ось в точке :
В этом виде невозможно представить прямую, проходящую через начало координат.
Нормальное уравнение прямой
где — длина перпендикуляра, опущенного на прямую из начала координат, а — угол (измеренный в положительном направлении) между положительным направлением оси и направлением этого перпендикуляра. Если , то прямая проходит через начало координат, а угол задаёт угол наклона прямой.
Вывод нормального уравнения прямой
Пусть дана прямая Тогда и Рассмотрим для этого перпендикуляра его орт Допустим, что угол между и осью равен Так как то можно записать: Теперь рассмотрим произвольную точку Проведём радиус-вектор Теперь найдём проекцию на вектор Следовательно, Это и есть нормальное уравнение прямой.
■
Если прямая задана общим уравнением то отрезки и отсекаемые ею на осях, угловой коэффициент расстояние прямой от начала координат и выражаются через коэффициенты , и следующим образом:
Во избежание неопределённости знак перед радикалом выбирается так, чтобы соблюдалось условие В этом случае и являются направляющими косинусами положительной нормали прямой — перпендикуляра, опущенного из начала координат на прямую. Если то прямая проходит через начало координат и выбор положительного направления произволен.
Уравнение прямой, проходящей через две заданные несовпадающие точки
Уравнение прямой, проходящей через две точки на вещественной плоскости
Если заданы две несовпадающие точки на вещественной плоскости с координатами и , то прямая, проходящая через них, задаётся уравнением
или
или в общем виде
Уравнение прямой, проходящей через две точки на комплексной плоскости
Если заданы две несовпадающие точки на комплексной плоскости и , то прямая, проходящая через них, задаётся следующим уравнением:
Следовательно, прямая линия полностью определяется выбором комплексного числа . Как точка на комплексной плоскости, так и прямая определяются одним вектором или двумя координатами. Комплексное числе называется вектором прямой, а его компоненты называются координатами прямой[6].
Определим геометрическую природу вектора прямой , определяющего просто точку на комплексной плоскости, рассмотрев два его свойства[7]:
из того, что в определении
знаменатель есть чисто мнимое комплексное число, следует, что вектор нормален к вектору , то есть нормален к прямой
абсолютная величина знаменателя в определении равна удвоенной площади треугольника с основанием , следовательно, абсолютная величина обратно пропорционален длине перпендикуляра, опущенного из начала координат к прямой Другими словами, точка есть инверсия основания этого перпендикуляра.
Получение векторного параметрического уравнения прямой
Векторное параметрическое уравнение прямой
Векторное параметрическое уравнение прямой задается вектором конец которого лежит на прямой, и направляющим вектором прямой Параметр пробегает все действительные значения.
Параметрические уравнения прямой
Параметрические уравнения прямой могут быть записаны в виде:
где — произвольный параметр, — координаты и направляющего вектора прямой. При этом
Смысл параметра аналогичен параметру в векторно-параметрическом уравнении.
Каноническое уравнение прямой
Каноническое уравнение получается из параметрическиx уравнений делением одного уравнения на другое:
Вывод
где — координаты и направляющего вектора прямой, и координаты точки, принадлежащей прямой.
Числа и называются её тангенциальными, линейными или плюккеровыми координатами.
Уравнения прямой в пространстве
Векторное параметрическое уравнение прямой в пространстве:
где — радиус-вектор некоторой фиксированной точки лежащей на прямой, — ненулевой вектор, коллинеарный этой прямой (называемый её направляющим вектором), — радиус-вектор произвольной точки прямой.
то уравнение прямой можно задать системой этих уравнений:
Векторное уравнение прямой в пространстве[8]:196-199:
Уравнение прямой в пространстве можно записать в виде векторного произведения радиуса-вектора произвольной точки этой прямой на фиксированный направляющий вектор прямой :
где фиксированный вектор , ортогональный вектору , можно найти, подставляя в это уравнение радиус-вектор какой-нибудь одной известной точки прямой.
Взаимное расположение точек и прямых на плоскости
Три точки , и лежат на одной прямой тогда и только тогда, когда выполняется условие
Отклонение точки от прямой может быть найдено по формуле
где знак перед радикалом противоположен знаку Отклонение по модулю равно расстоянию между точкой и прямой; оно положительно, если точка и начало координат лежат по разные стороны от прямой, и отрицательно, если по одну сторону.
В пространстве расстояние от точки до прямой, заданной параметрическим уравнением
можно найти как минимальное расстояние от заданной точки до произвольной точки прямой. Коэффициент этой точки может быть найден по формуле
Взаимное расположение нескольких прямых на плоскости
Две прямые, заданные уравнениями
или
пересекаются в точке
Угол между пересекающимися прямыми определяется формулой
При этом под понимается угол, на который надо повернуть первую прямую (заданную параметрами , , , и ) вокруг точки пересечения против часовой стрелки до первого совмещения со второй прямой.
На прямой точка может двигаться в двух противоположных направлениях. Например, если прямая расположена горизонтально (см. рисунок справа с горизонтальной прямой), то на ней возможны два движения в противоположных направлениях[9][10][11]:
Линейный элемент — пара геометрических образов: точка и направленная прямая, проходящая через эту точку[13][14]. Другими словами, линейный элемент — это точка и направление, заданное в этой точке. Бесконечно удалённый линейный элемент — пара геометрических образов: бесконечно удалённая точка плоскости и направление, которое определяется любой направленной прямой (параллельные прямые задают одно направление)[14].
Окружности, точки и прямые в касательной аналлагматической геометрии понимаются следующим образом[14]:
направленной окружностью называется множество всех линейных элементов, каждый из которых определяется точкой этой окружности и касательной прямой к окружности в этой точке, причем направление линейного элемента совпадает с направлением окружности;
точкой называется множество всех линейных элементов, каждый из которых имеет в своём составе эту точку;
направленной прямой называется множество всех линейных элементов, каждый из которых определяется точкой этой прямой и направлением прямой.
На следующем рисунке показаны направленная окружность, точка и направленная прямая, задаваемые линейными элементами.
Геометрические образы, определяемые линейными элементами