где переменные и — соответственно азимутальный и зенитный углы, — некоторая константа.
Клелии были впервые описаны итальянским математиком Гвидо Гранди во второй части работы «Геометрические цветы» («Flores geometrici», 1728)[1] и названы им в честь современницы, математика Клелии Борромео.
Проекции клелий на экваториальную плоскость являются розами — плоскими кривыми, также открытыми Гранди и описанными им в первой части той же работы.
Доказательство
Запишем уравнение клелии в виде и возьмём от обеих частей синус:
На практике форму клелий имеют круговые полярные орбиты спутников. При этом константа равна отношению периода обращения спутника к периоду осевого вращения центрального тела.
Всякая клелия проходит через северный и южный полюса сферы. При рациональном кривая замкнута и имеет конечную длину, при иррациональном — не замкнута и её длина бесконечна.