Приведённая система вычетовпо модулюm — множество всех чисел полной системы вычетов по модулю m, взаимно простых с m.
В качестве приведённой системы вычетов по модулю m обычно берутся взаимно простые с m числа от 1 до m — 1[1].
Набор любых (функция Эйлера) попарно несравнимых по модулю m и взаимно простых с m чисел образует приведённую систему вычетов по модулю [1].
Если НОД(a,m) = 1, то множество значений ax, где x пробегает приведенную систему вычетов по модулю m, также является приведенной системой вычетов по модулю m[2].
Если НОД(k,m) = 1, то множество значений kx + my, где x пробегает приведенную систему вычетов по модулю m и y пробегает приведенную систему вычетов по модулю k, является приведенной системой вычетов по модулю km[3].
В случае, когда число m простое, приведенная система вычетов по модулю m отличается от полной системы вычетов отсутствием нуля[4].
Если a — элемент приведенной системы вычетов по модулю m, то, для любого bсравнение разрешимо относительно x[4].
Приведённая система вычетов с умножением по модулю m образует группу, называемую мультипликативной группой или мультипликативной группой обратимых элементов кольца вычетов по модулю m, которая обозначается или [4].
Если m простое, то, как отмечалось выше, элементы 1, 2, …,m-1 входят в . В этом случае кольцо вычетов является полем[4].
Формы записи
Кольцо вычетов по модулю n обозначают или . Его мультипликативную группу, как и в общем случае групп обратимых элементов колец, обозначают .
Простейший случай
Чтобы понять структуру группы , можно рассмотреть частный случай
, где — простое число, и обобщить его. Рассмотрим простейший случай, когда
, то есть .
Как видим, любой элемент группы может быть представлен в виде , где . То есть группа — циклическая.
Общий случай
Для рассмотрения общего случая необходимо определение примитивного корня.
Примитивный корень по простому модулю — это число, которое вместе со своим классом вычетов порождает группу .[5]
Примеры:2 — примитивный корень по модулю 11; 8 — примитивный корень по модулю 11; 3 не является примитивным корнем по модулю 11.
В случае целого модуля определение такое же.
Структуру группы определяет следующая теорема: Если p — нечётное простое число и — целое положительное, то существуют примитивные корни по модулю , то есть — циклическая группа.
Группа — также циклическая порядка a при a = 1 или a = 2. При эта группа циклической не является и представляет собой прямое произведение двух циклических групп, порядков и .
Группа циклична тогда и только тогда, когда или или n = 2 или n = 4, где p — нечетное простое число. В общем случае как абелева группа представляется прямым произведением циклических примарных групп, изоморфных .[5]
Подгруппа свидетелей простоты
Пусть — нечётное число большее 1. Число однозначно представляется в виде , где нечётно. Целое число , , называется свидетелем простоты числа , если выполняется одно из условий:
или
существует целое число , , такое, что
Если число — составное, существует подгруппа мультипликативной группы кольца вычетов, называемая подгруппой свидетелей простоты. Её элементы, возведённые в степень , совпадают с по модулю .
Пример: . Есть остатков, взаимно простых с , это и . эквивалентно по модулю , значит эквивалентно по модулю . Значит, и — свидетели простоты числа . В данном случае {1, 8} — подгруппа свидетелей простоты.[6]
Порядок группы равен функции Эйлера: . Отсюда и из изоморфизма ≈ можно получить ещё один способ доказательства равенства при [5]
Порождающее множество
— циклическая группа тогда и только тогда, когда В случае циклической группы генератор называется первообразным корнем.
Пример
Приведённая система вычетов по модулю состоит из классов вычетов: .
Относительно определённого для классов вычетов умножения они образуют группу, причём и взаимно обратны (то есть ),
а и обратны сами себе.
Вклад в исследование структуры мультипликативной группы кольца вычетов внесли Артин, Билхарц, Брауэр, Вильсон, Гаусс, Лагранж, Лемер, Варинг, Ферма, Хули, Эйлер.
Лагранж доказал лемму о том, что если , и k — поле, то f имеет не более n различных корней, где n — степень f. Он же доказал важное следствие этой леммы, заключающееся в сравнении ≡ . Эйлер доказал малую теорему Ферма. Варинг сформулировал теорему Вильсона, а Лагранж её доказал. Эйлер предположил существование примитивных корней по модулю простого числа. Гаусс это доказал. Артин выдвинул свою гипотезу о существовании и количественной оценке простых чисел, по модулю которых заданное целое число является первообразным корнем. Брауэр внес вклад в исследование проблемы существования наборов последовательных целых чисел, каждое из которых — k-ая степень по модулю p. Билхарц доказал аналог гипотезы Артина. Хули доказал гипотезу Артина с предположением справедливости расширенной гипотезы Римана в полях алгебраических чисел.[5]
Примечания
↑ 12И. М. Виноградов Основы теории чисел. изд. 9-е, перераб., М. : Наука. 1981
↑Сагалович Ю. Л. Введение в алгебраические коды. 2011.