Теорема Вильсона — теорема теории чисел, которая утверждает, что
Если — простое число, то число делится на .
Обратно: если делится на , то — простое число или 1.
Эта теорема, в основном, имеет теоретическое значение, поскольку факториал вычислить довольно трудно. Проще вычислить , поэтому элементарные тесты, определяющие, является ли число простым, основаны на теореме Ферма, а не на теореме Вильсона. Например, наибольшее простое число, найденное с использованием теоремы Вильсона, скорее всего — 1099511628401, и даже с оптимизированным подходом к расчёту потребуется около суток вычислений на процессорах SPARC, а числа с десятками тысяч цифр проходят тест на простоту с использованием теоремы Ферма меньше чем за час. Но, в отличие от малой теоремы Ферма, теорема Вильсона является одновременно необходимым и достаточным условием для простоты.
История
Эта теорема впервые была сформулирована Ибн аль-Хайсамом около 1000 г.н.э,[1] и в 1770 году Варинг сформулировал эту теорему в своём сочинении «Meditationes Algebraicae», опубликованном в Кембридже, где он привёл эту теорему без доказательства. По его словам, теорема принадлежит его ученику Вильсону[англ.]. Доказательство теоремы он опубликовал только в третьем издании своего Meditationes в 1782 году. Первое доказательство теоремы Вильсона было дано в 1771 году Лагранжем[2].
имеет 8072304726028225379382630397085399030071367921738743031867082828418424481568309149198911814701229483451981557574771156496457238535299087481244990261351117 цифр, последовательность A241293 в OEIS.
Наконец, Эйлер в «Opusc. Analyt», Т. 1, р. 329 дал доказательство, Гаусс обобщил теорему Вильсона на случай составного модуля. Имеются данные о том, что Лейбниц знал о результате ещё столетием раньше, но никогда не публиковал его.
Пример
В таблице посчитаны значения для p от 2 до 37, а также остаток от деления на p (остаток от деления m на p обозначается как m mod p). Зелёным цветом выделены простые числа.
Таблица остатков по модулю n
 |
 |
|
2 |
1 |
1
|
3 |
2 |
2
|
4 |
6 |
2
|
5 |
24 |
4
|
6 |
120 |
0
|
7 |
720 |
6
|
8 |
5040 |
0
|
9 |
40320 |
0
|
10 |
362880 |
0
|
11 |
3628800 |
10
|
12 |
39916800 |
0
|
13 |
479001600 |
12
|
14 |
6227020800 |
0
|
15 |
87178291200 |
0
|
16 |
1307674368000 |
0
|
17 |
20922789888000 |
16
|
18 |
355687428096000 |
0
|
19 |
6402373705728000 |
18
|
20 |
121645100408832000 |
0
|
21 |
2432902008176640000 |
0
|
22 |
51090942171709440000 |
0
|
23 |
1124000727777607680000 |
22
|
24 |
25852016738884976640000 |
0
|
25 |
620448401733239439360000 |
0
|
26 |
15511210043330985984000000 |
0
|
27 |
403291461126605635584000000 |
0
|
28 |
10888869450418352160768000000 |
0
|
29 |
304888344611713860501504000000 |
28
|
30 |
8841761993739701954543616000000 |
0
|
31 |
265252859812191058636308480000000 |
30
|
32 |
8222838654177922817725562880000000 |
0
|
33 |
263130836933693530167218012160000000 |
0
|
34 |
8683317618811886495518194401280000000 |
0
|
35 |
295232799039604140847618609643520000000 |
0
|
36 |
10333147966386144929666651337523200000000 |
0
|
37 |
371993326789901217467999448150835200000000 |
36
|
Доказательство
Достаточность
Пусть p — простое.
- Способ 1
Рассмотрим . Множество ненулевых классов вычетов по простому модулю p по умножению является группой, и тогда - это произведение всех элементов группы . Поскольку - группа, то для каждого её элемента существует единственный обратный элемент . Соответствие разбивает группу на классы: если (что равносильно , то есть , поскольку у уравнения второй степени может быть не более двух решений), то класс содержит один элемент , в противном случае класс состоит из двух элементов - . Значит, если класс содержит один элемент , то произведение всех его элементов равно , а если класс содержит 2 элемента, то произведение всех его элементов равно 1. Теперь в произведении сгруппируем элементы по классам, все произведения по 2-элементным классам просто равны 1:

■
- Способ 2
Группа циклична, т. е. существует элемент такой, что для всякого элемента существует такое, что . Поскольку имеет элемент, то пробегает значения от 0 до , когда пробегает всю группу вычетов.
Тогда

■
- Способ 3
- поле, поэтому в нем имеет место теорема Лагранжа, т. е. многочлен степени имеет не более корней. Рассмотрим многочлены и . Оба многочлена имеют корни (для это получается по малой теореме Ферма), степени многочленов равны , старшие коэффициенты одинаковы. Тогда многочлен имеет как минимум те же корней, но его степень не более . Значит по теореме Безу тождественно равен нулю, т. е. для всех будет , в частности , что равносильно . Получаем утверждение теоремы для , т. к. четно и значит .■
Необходимость
Если составное и , то , а при получаем .
Геометрическое доказательство достаточности
- Пусть p — простое число. Перенумеруем вершины правильного p-угольника в порядке обхода контура: 1, 2, 3, ..., p. Если соединим их диагоналями последовательно через одну, потом через две, через три и т. д., то кроме правильного многоугольника 123..., получим ещё (p − 2) многоугольников 135..., 147..., 159... и т. д. Эти (p − 1) многоугольников попарно тождественны, так как при соединении вершин через k и через (p − k − 2) получаем тождественные многоугольники. Число различных правильных многоугольников, полученных этим путём, равно
;
- Если соединим вершины в каком-либо другом порядке, например в порядке 13245..., то получим неправильный многоугольник; повёртывая этот многоугольник так, чтобы номера его вершин заменялись следующими по порядку числами (число p заменяется при этом единицей), получим p неправильных многоугольников. В вышеуказанном примере это будут многоугольники 13245..., 24356..., 35467..., ..., 2134... Если таким путём образуем все возможные неправильные многоугольники, то число их будет кратно p, но, как и в случае правильных многоугольников, они по два тождественны; именно две последовательности вершин, прямая и обратная, дают один и тот же многоугольник;
- Если в последовательности вершин 123... сделать все возможные перестановки (p − 1) вершин 23..., то получим все возможные (правильные и неправильные) многоугольники; их число будет равно
; они опять будут попарно тождественны, так что действительное их число ;
- Сопоставляя результаты из пунктов 1 и 3, видим, что число неправильных многоугольников будет равно:
. Из пункта 2, это число должно делиться на p; следовательно (p − 1)! + 1 кратно p.:■
Применение
- Используем теорему Вильсона

Для нечётного простого p = 2m + 1, получаем

В результате

Мы можем использовать этот факт для доказательства известного результата: для любого простого p, такого что p ≡ 1 (mod 4) число (−1) является квадратом (квадратичный вычет) по модулю p. Действительно, пусть p = 4k + 1 для некоторого натурального k. Тогда m = 2k, следовательно

Теорема Вильсона используется для генерирования простых чисел, но она слишком медленная для практического применения.
Обобщение
Используя в качестве образца теорему Эйлера, попытаемся обобщить теорему Вильсона на случай p = n, где n — произвольное натуральное число. Простая замена (p − 1)! на произведение n1n2…nk всех чисел, меньших n и взаимно простых с n, не проходит: в случае n = 8 это произведение равно 1 × 3 × 5 × 7 = 105, а 106 на 8 не делится. Но оказывается, что или n1n2…nk + 1, или n1n2…nk − 1 обязательно делится на n.
- Хвост

- Окно

Рассмотрим множество En чисел, меньших n и взаимно простых с n. Под произведением двух элементов этого множества ab, будем понимать остаток от деления обычного произведения ab на n. Ясно, что если a, b принадлежит En, то ab принадлежит En. Множество En относительно операции умножения является группой. В отличие от случая, когда n — простое, группа En может содержать элементы, не равные 1 и (n − 1) такие, что их квадрат равен 1: например если n = 8, то 3 × 3 = 1, 5 × 5 = 1, 7 × 7 = 1. Поэтому в общем случае произведение всех элементов из En не равно (n − 1). Покажем, что тогда оно равно 1.
- Зонт

- Ручки

Назовем элемент a группы En особым, если aa = 1. В этом случае элемент n − a — тоже особый. Следовательно, группа En содержит чётное число особых элементов: (a, n − a) — множество таких элементов, и никакой элемент не может быть парой сам для себя. Пусть n1, n2, …, nk — все элементы группы En, то есть полный набор чисел, меньших n и взаимно простых с n.
Множество элементов, не являющихся особыми, разбивается на пары взаимно обратных, поэтому произведение таких элементов равно 1. С другой стороны, произведение особых элементов, составляющих пару (a, n − a), равно n − 1. Поскольку (n − 1)(n − 1) = 1, то произведение всех особых элементов равно 1 или n − 1, в зависимости от того, чётным или нечётным является число пар вида (a, n − a).■
Впервые теорема была доказана и обобщена Гауссом, при любом n > 2 для произведения всех натуральных чисел, не превосходящих n и взаимно простых с n, имеет место сравнение:

где — нечётное простое число, — натуральный показатель.
Позже было найдено ещё одно формальное обобщение теоремы Вильсона (В.Виноград):
При получается теорема Вильсона.
При получается , т.е.
, если
и
, если
См. также
Примечания
Литература
- Бухштаб А. А. Теория чисел, 2-е издание, М., 1966
- Трост Э. Простые числа, пер. с нем., М., 1959
- Виноградов И. М. Основы теории чисел. — 5 изд.. — М.—Л.: Гостехиздат, 1952.
- R. Crandall, K. Dilcher and C. Pomerance The Prime Glossary (англ.)
- Ore, O. Number Theory and its History. McGraw-Hill, 1948.
- Бончковский Р. Н. и Чистяков И. И. Математическое просвещение, выпуск 01
 Ссылки на внешние ресурсы |
---|
| |
---|
Словари и энциклопедии | |
---|
|