Графическая демонстрация сходимости суммы 1/2 + 1/3 + 1/7 + 1/43 + … к 1. Каждая строка квадратов со стороной имеет общую площадь , и все квадраты вместе в точности покрывают большой квадрат с площадью 1. Квадраты со стороной 1/1807 или меньше слишком малы, чтобы их увидеть на рисунке, и они не показаны.
Последовательность Сильвестра — целочисленная последовательность[англ.], в которой каждый очередной член равен произведению предыдущих членов плюс единица. Первые несколько членов последовательности:
Эквивалентность определений доказывается прямой индукцией.
Общая формула и асимптотики
Члены последовательности Сильвестра растут со скоростью двойной экспоненты[англ.]. В частности, можно показать, что:
где число приблизительно равно 1,264084735305302[1]. Эта формула приводит к следующему алгоритму:
s0 — ближайшее целое к E2; s1 — ближайшее целое к E4; s2 — ближайшее целое к E8; для sn, берём E2, возводим в квадрат n раз и берём ближайшее целое.
Этот алгоритм был бы приемлемым, если бы мы имели лучший путь вычисления E вместо вычисления чисел sn с последующим вычислением квадратных корней.
Рост элементов последовательности Сильвестра со скоростью двойной экспоненты совершенно не удивителен, если сравнивать с последовательностью чисел ФермаFn. Числа Ферма часто задаются по формуле двойной экспоненты , но их можно также задать по формулам умножения, подобным формулам последовательности Сильвестра:
Поскольку последовательность частичных сумм (sj−2)/(sj−1) сходятся к единице, весь ряд образует бесконечное представление единицы в виде египетской дроби:
Можно найти конечные представления единицы в виде египетской дроби любой длины путём обрывания этого ряда и вычитанием единицы из последнего знаменателя:
Сумма первых k членов бесконечного ряда даёт ближайшую нижнюю оценку единицы k-членными египетскими дробями.[2] Например, первые четыре члена добавляются к 1805/1806, а потому любая египетская дробь в открытом интервале (1805/1806,1) требует по меньшей мере пять членов.
Единственность быстрорастущих рядов с рациональными суммами
Как заметил сам Сильвестр, последовательность Сильвестра, похоже, единственная, которая имеет такую скорость роста, при этом сходясь к рациональному числу. Эта последовательность показывает пример того, что скорость роста двойной экспоненты недостаточна для того, чтобы последовательность целых чисел была рациональной последовательностью[3].
Из результата Бадеа[4] следует, что если последовательность целых чисел растёт достаточно быстро, так, что
и если ряд
сходится к рациональному числу A, то для всех n, начиная с некоторого места, эта последовательность должна удовлетворять рекуррентному соотношению
,
что можно использовать для определения последовательности Сильвестра.
Эрдёш[5] высказал гипотезу, что в результатах такого типа границу неравенства роста последовательности можно заменить на более слабое условие
Делимость и разложение
Если i < j, из определения следует, что sj ≡ 1 (mod si). Таким образом, любые два члена последовательности Сильвестра взаимно просты. Последовательность можно использовать для доказательства бесконечности числа простых чисел, поскольку любое простое число может делить максимум одно число в последовательности. Никакой простой множитель числа в последовательности не может быть сравним с 5 (mod 6), и последовательность можно использовать для доказательства, что существует бесконечно много простых чисел, сравнимых с 7 (mod 12).[6]
Много остаётся неизвестного о разложении на множители членов последовательности Сильвестра. Например, неизвестно, являются ли все члены последовательности свободными от квадратов, хотя все члены, для которых известно разложение на простые, таковыми являются.
Как пишет Варди (Vardi 1991), легко установить, какой из членов последовательности Сильвестра (если такой есть) делится на простое число p — просто вычисляем вычеты членов последовательности по модулю p согласно рекуррентной формуле, пока не встретится ноль (по модулю p) или встретится такой же остаток. Используя эту технику, Варди нашёл, что 1166 из первого миллиона простых чисел являются делителями чисел Сильвестра,[7] и ни один квадрат этих простых чисел не делит числа Сильвестра.
Множество простых чисел, которые могут оказаться делителями членов ряда Сильвестра, имеет плотность ноль во множестве всех простых чисел. Более того, согласно Джонсу [8] число таких простых меньших x равно .[9]
В следующей таблице приведены известные разложения этих чисел, (за исключением первых четырёх, являющихся простыми):[10]
Задача Знама касается множеств чисел, таких, что каждое число в множестве делит, но не равно произведению всех остальных множеств плюс единица. Без условия эквивалентности значения последовательности Сильвестра решают эту задачу. Если это условие ставится, имеется другое решение, получаемое из рекуррентного соотношения, подобного определению последовательности Сильвестра. Решения задачи Знама имеют приложения к классификации особых точек поверхностей (Brenton, Hill 1988) и теории недетерминированных конечных автоматов.[12]
Куртис (Curtiss 1922) описывает приложение ближайшего приближения к единице k-членными суммами долей единицы к нижней границе числа делителей любого совершенного числа, а Мюллер (Miller 1919) использует то же самое свойство для нижней границы[англ.] числа некоторых групп.
↑В своей работе Зайден и Вогингер ссылаются на последовательность Сильвестра как на «последовательность Зальцера», опираясь на работу Зальцера (Salzer 1947) о ближайшей аппроксимации.
Lawrence Brenton, Richard Hill. On the Diophantine equation 1=Σ1/ni + 1/Πni and a class of homologically trivial complex surface singularities // Pacific Journal of Mathematics. — 1988. — Т. 133, вып. 1. — С. 41—67. — doi:10.2140/pjm.1988.133.41.
D. J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. — Coordinated Science Lab., Univ. of Illinois, Urbana-Champaign, 1979. — Вып. Tech. Rep. R—864.
Michael Domaratzki, Keith Ellul, Jeffrey Shallit, Ming-Wei Wang. Non-uniqueness and radius of cyclic unary NFAs // International Journal of Foundations of Computer Science. — 2005. — Т. 16, вып. 5. — С. 883—896. — doi:10.1142/S0129054105003352.
Paul Erdős, Ronald L. Graham. Old and new problems and results in combinatorial number theory. — Monographies de L'Enseignement Mathématique, No. 28, Univ. de Genève, 1980.
Gábor Galambos, Gerhard J. Woeginger. On-line bin packing — A restricted survey (англ.) // Mathematical Methods of Operations Research. — 1995. — Vol. 42, iss. 1. — P. 25. — doi:10.1007/BF01415672.
Frank M. Liang. A lower bound for on-line bin packing // Information Processing Letters. — 1980. — Т. 10, вып. 2. — С. 76—79. — doi:10.1016/S0020-0190(80)90077-0.
Steven S. Seiden, Gerhard J. Woeginger. The two-dimensional cutting stock problem revisited // Mathematical Programming. — 2005. — Т. 102, вып. 3. — С. 519—530. — doi:10.1007/s10107-004-0548-1.
K. Soundararajan. Approximating 1 from below using n Egyptian fractions. — 2005. — arXiv:math.CA/0502247.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.