Соверше́нное число́ (др.-греч.ἀριθμὸς τέλειος) — натуральное число, равное сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самого́ числа). Например, число 6 равно сумме своих собственных делителей 1 + 2 + 3. Это понятие было введено пифагорейцами в VI веке до н. э.; согласно их нумерологической мистике, совпадение числа с суммой своих делителей свидетельствовало об особом совершенстве такого числа[1].
Если суммировать все делители числа (то есть добавить само число) или получим другое эквивалентное определение: Совершенные числа — это числа, у которых сумма всех делителей в 2 раза больше самого числа.
По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Неизвестно, бесконечно ли множество всех совершенных чисел. Неизвестно также, есть ли среди них нечётные.
1-е совершенное число — 6 имеет следующие собственные делители: 1, 2, 3; их сумма равна 6.
2-е совершенное число — 28 имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма равна 28.
3-е совершенное число — 496 имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма равна 496.
4-е совершенное число — 8128 имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма равна 8128.
История изучения
Чётные совершенные числа
Алгоритм построения чётных совершенных чисел описан в IX книге «Начал» Евклида, где было доказано, что число является совершенным, если число является простым (т. н. простые числа Мерсенна)[3]. Впоследствии Леонард Эйлер доказал, что все чётные совершенные числа имеют вид, указанный Евклидом.
В античные времена были известны только первые четыре совершенных числа (соответствующие р = 2, 3, 5 и 7), они приведены в «Арифметике» Никомаха Геразского.
Пятое, шестое и седьмое совершенные числа обнаружил в XIII веке арабский математик Исмаил ибн Фаллус[англ.], однако в Европе эти числа оставались неизвестны ещё несколько сотен лет.
Пятое совершенное число 33 550 336, соответствующее р = 13, нашёл в 1536 году голландский математик Худалрик Peгиус (лат.Hudalrichus Regius) в трактате «Utriusque Arithmetices» (1536 год)[4]. Позднее это число было также обнаружено историками в неопубликованной рукописи Региомонтана 1461 года[5].
В 1603 году итальянский математик Катальди обнаружил и опубликовал шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Они соответствуют р = 17 и р = 19. Заодно он опроверг гипотезу Никомаха, согласно которой в последних цифрах членов последовательности совершенных чисел чередуются цифры 6 и 8[5].
Восьмое совершенное число в 1772 году открыл Леонард Эйлер, а также доказал, что любое чётное совершенное число должно иметь вид , причём должно быть простым.
Девятое совершенное число в 1883 году открыл Иван Михеевич Первушин — священник Русской православной церкви из Шадринского уезда Пермской губернии[6].
В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходящие человеческие возможности.
На 2024 год известно 52 совершенных числа, вытекающих из простых чисел Мерсенна, поиском которых занимается проект добровольных вычислений GIMPS.
52-е совершенное число обнаружил 36-летний Люк Дюрант из Калифорнии, США. Оно равно .
Нечётные совершенные числа
Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, конечно ли множество нечётных совершенных чисел, если они существуют.
Доказано, что нечётное совершенное число, если оно существует, превышает 102200; при этом число простых делителей такого числа с учётом кратности не меньше 101[7]. Поиском нечётных совершенных чисел занимается проект добровольных вычислений OddPerfect.org[8].
Свойства
Все чётные совершенные числа (кроме 6) являются суммой кубов последовательных нечётных натуральных чисел:
.
Все чётные совершенные числа являются треугольными и одновременно шестиугольными числами, то есть могут быть представлены в виде для некоторого натурального числа .
Сумма всех чисел, обратных делителям совершенного числа (включая само число), равна 2. Это прямое следствие определения и того факта, что сумма делителей при делении на само число дает сумму чисел, обратных делителям.
Все чётные совершенные числа, кроме 6 и 496, заканчиваются в десятичной записи на 16, 28, 36, 56 или 76.
Если сложить все цифры чётного совершенного числа (кроме 6), затем сложить все цифры полученного числа и так повторять, пока не получится однозначное число[9], то это число будет равно 1 (2 + 8 = 10, 1 + 0 = 1; 4 + 9 + 6 = 19, 1 + 9 = 10…) Эквивалентная формулировка: остаток от деления чётного совершенного числа, отличного от 6, на 9 равен 1.
Благодаря своей форме каждое чётное совершенное число представлено в двоичной форме в виде последовательности единиц, за которыми следует нолей, например: (последовательность A135650 в OEIS).
В религии
Особенный («совершенный») характер чисел 6 и 28 был признан в культурах, имеющих основание в авраамических религиях, утверждающих, что Бог сотворил мир за 6 дней и обративших внимание на то, что Луна совершает оборот вокруг Земли примерно за 28 дней.
Джеймс Эшельман в книге «Еврейские иерархические имена Брии»[10] пишет, что в соответствии с гематрией:
Не менее важна идея, выраженная числом 496. Это «теософское расширение» числа 31 (то есть сумма всех целых чисел от 1 до 31). Помимо всего прочего, это сумма слова малхут (царство). Таким образом, Царство, полное проявление первичной идеи Бога, предстает в гематрии как естественное дополнение или проявление числа 31, которое является числом имени 78.
«Левиафан» (букв. «извивающийся») — один из четырёх Князей Тьмы, воплощённый в форме змея. Поэтому удерживать Левиафана — значит контролировать энергии Нефеш, ассоциируемые со сфирой йесод. Во-вторых, «змей изгибающийся» может означать и «свернувшийся кольцами змей», то есть Кундалини. В-третьих, гематрия слова «Левиафан» — 496, так же как и слова «Малхут» (Царство); представление о том, что архангел Йесод сдерживает природу Малхут, даёт богатую пищу для размышлений. В-четвёртых, число 496 — это сумма чисел от 1 до 31, то есть полное расширение, или проявление, имени «Эль», божественного имени трёх высших сфирот в Брии (в том числе и сфиры Кетер, ангелом которой является Йехоэль).
В Евангелии от Иоанна число 496 связывает воедино Пролог и Эпилог. В Прологе 496 слогов, а в Эпилоге (более пространном) 496 слов[11].
Число 6 совершенно само по себе, а не потому, что Господь сотворил всё сущее за 6 дней; скорее наоборот, Бог сотворил всё сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней.
избыточные числа, для которых сумма собственных делителей больше, чем само число;
недостаточные числа, для которых сумма собственных делителей меньше, чем само число;
совершенные числа, для которых сумма собственных делителей равна самому числу.
Современные исследования показали, что наиболее распространены недостаточные числа, их примерно 75 %. Избыточных чисел немногим менее 25 %. Доля совершенных чисел на интервале от 1 до с ростом стремится к нулю[13].
↑Успенский В. А. Предисловие к математике [сборник статей]. — СПб.: ООО «Торгово-издательский дом Амфора», 2015. — С. 87. — 474 с. — (Популярная наука, вып. 12). — ISBN 978-5-367-03606-0.
↑Числа (неопр.). Дата обращения: 10 сентября 2011. Архивировано 16 апреля 2015 года.
↑Ричард Бокэм [пер. с англ. Н. Холмогоровой]. Иисус глазами очевидцев : первые дни христианства: живые голоса свидетелей. — Москва: Эксмо, 2011. — 669 с. — ISBN 978-5-699-46401-2.
↑Стюарт И. Невероятные числа профессора Стюарта = Professor Stewart's incredible numbers. — М.: Альпина нон-фикшн, 2016. — С. 103—104. — 422 с. — ISBN 978-5-91671-530-9.