Ток смещения (электродинамика)Ток смещения, или абсорбционный ток, — величина, прямо пропорциональная скорости изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля. Введение тока смещения позволило устранить противоречие[1] в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики. Существование тока смещения также следует из закона сохранения электрического заряда[2]. Строго говоря, ток смещения не является[3] электрическим током, но измеряется в тех же единицах, что и электрический ток. Точная формулировкаВ вакууме, а также в любом веществе, в котором можно пренебречь поляризацией либо скоростью её изменения, током смещения (с точностью до универсального постоянного коэффициента) называется[4] поток вектора скорости изменения электрического поля через некоторую поверхность[5] : В диэлектриках (и во всех веществах, где нельзя пренебречь изменением поляризации) используется следующее определение: где D — вектор электрической индукции (исторически вектор D назывался электрическим смещением, отсюда и название «ток смещения») Соответственно, плотностью тока смещения в вакууме называется величина а в диэлектриках — величина В некоторых книгах плотность тока смещения называется просто «током смещения». Ток смещения и ток проводимостиВ природе можно выделить два вида токов: ток связанных зарядов и ток проводимости. Ток связанных зарядов — это перемещение средних положений связанных электронов и ядер, составляющих молекулу, относительно центра молекулы. Ток проводимости — это направленное движение на большие расстояния свободных зарядов (например, ионов или свободных электронов). В случае, если этот ток идёт не в веществе, а в свободном пространстве, нередко вместо термина «ток проводимости» употребляют термин «ток переноса». Иначе говоря, ток переноса или ток конвекции обусловлен переносом электрических зарядов в свободном пространстве заряженными частицами или телами под действием электрического поля. Во времена Максвелла ток проводимости мог быть экспериментально зарегистрирован и измерен (например, амперметром, индикаторной лампой), тогда как движение связанных зарядов внутри диэлектриков могло быть лишь косвенно оценено. Сумма тока связанных зарядов и быстроты изменения потока электрического поля была названа током смещения в диэлектриках. При разрыве цепи постоянного тока и включении в неё конденсатора ток в разомкнутом контуре отсутствует. При питании такого разомкнутого контура от источника переменного напряжения в нём регистрируется переменный ток (при достаточно высокой частоте и ёмкости конденсатора загорается лампа, включённая последовательно с конденсатором). Для описания «прохождения» переменного тока через конденсатор (разрыв по постоянному току) Максвелл ввёл понятие тока смещения. Ток смещения существует и в проводниках, по которым течёт переменный ток проводимости, однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально русским физиком А. А. Эйхенвальдом, изучившим магнитное поле тока поляризации, который является частью тока смещения. В общем случае, токи проводимости и смещения в пространстве не разделены, они находятся в одном и том же объеме. Поэтому Максвелл ввёл понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока: где j — плотность тока проводимости, jD — плотность тока смещения[6]. В диэлектрике (например, в диэлектрике конденсатора) и в вакууме нет токов проводимости. Поэтому в этом частном случае приведенная выше формула Максвелла сводится к: Примечания
|
Portal di Ensiklopedia Dunia