Графикони y = bx за разне базе b: база 10,база e,база 2, база 1/2. Свака крива пролази кроз тачку (0, 1), јер је сваки ненулти број подигнут у степен 0 једнак 1. При x = 1, вредност y једнака је бази, јер је сваки број подигнут у степен 1 сам број.
Степеновање је математичка бинарна операција, у запису ab. У овом запису a се назива основа, а bекспонент. Чита се „a на b-ти степен“ или краће „a на b“, где је a кардинални, а b редни (ординални) број.[1][2] На пример, 57 се чита „пет на седми (степен)“.name=":1" />
Ако је n ∈ ℕ, онда степен представља основу помножену самом собом n пута:
Експонент се обично приказује као суперскрипт десно од основе. У том случају, bn се назива „b подигнуто у n-ти степен“, „b подигнуто на степен n“,[1] „n-ти степен од b“, „b на n-том степену“,[3] или кратко као „b на n-ти“.
За један важи b1 = b, и за било који пар позитивних целих бројева m и n важи bn ⋅ bm = bn+m. Да би се ово својство проширило на целобројне експоненте који нису позитивни, b0 је дефинисано као 1, а b−n (при чему је n позитивни цео број и b није нула) дефинисано је као 1/bn. Конкретно, b−1 је једнако 1/b, реципрочна вредност од b.
Дефиниција експоненцијације се може проширити тако да се дозволи било који реални или комплексни експонент. Експоненцирање целобројним експонентима такође се може дефинисати за широк спектар алгебарских структура, укључујући матрице.
Израз степен (лат.potentia, potestas, dignitas) није најнесрећнији превод[4][5]старогрчког δύναμις (dúnamis, овде: „појачање“[4]) које је грчки математичар Еуклид користио за квадрат линије,[6] следећи Хипократа са Хиоса.[7]Архимед је открио и доказао закон експонената, 10a ⋅ 10b = 10a+b, неопходан за манипулисање степенима од 10.[8] У 9. веку персијски математичар Мухамед ел Хорезми користио је изразе مَال (māl, „посед“, „имање“) за квадрат - муслимани, „попут већине математичара тих и ранијих времена, сматрали су на квадрат број као приказ подручја, посебно земљишта, те отуда и својства“[9] - и كَعْبَة (kaʿbah, „коцка“) за куб, коју су касније исламски математичари у математичкој нотацији представљали као слова mīm (m) и kāf (k), до 15. века, као што се види у делу Абу ел-Хасана ибн Али ел-Каласада.[10]
Крајем 16. века, Јост Бурги је за експоненте користио римске бројеве.[11]
Никола Шике је користио облик експоненцијалне нотације у 15. веку, који су касније користили Хенрикус Граматеус и Михаел Штифел у 16. веку. Реч експонент је сковао 1544. године Михаел Штифел.[12][13]Самјуел Џик је увео појам индекси 1696.[6] У 16. веку Роберт Рекорд је користио термине квадрат, куб, зензизензик (четврти степен), сурсолид (пети), зензикјуб (шести), други сурсолид (седми) и зензизензизензик (осми).[9]Биквадрат је такође кориштен као назив за четврти степен.
Почетком 17. века, први облик модерне експоненцијалне нотације је увео Рене Декарт у свом тексту под називом Геометрија; у којем је нотација уведена у Књизи I.[14]
Неки математичари (као што је Рене Декарт) користили су експоненте само за степене веће од два, преферирајући да представљају квадрате као поновљено умножавање. Стога би написали полиноме, на пример, као ax + bxx + cx3 + d.
Један други историјски синоним, инволуција сада се ретко среће[15] и не треба га поистовећивати са његовим чешћим значењем.
„Размотрите експоненцијале или степене у којима је сам експонент променљив. Јасно је да величине ове врсте нису алгебарске функције, јер у тим експонентима морају бити константне.”[16]
чиме се, полазећи од дефиниције степеновања са експонентом који је природан (односно позитиван цео) број, дефинише степеновање за сваки целобројни експонент.
Степеновање са нецелобројним експонентима
Рационални експонент
По дефиницији,
Нека је експонент b ∈ ℚ рационалан број. Тада се може написати b = p / q, p ∈ ℤ q ∈ ℕ, при чему је
Како парни коренови негативних бројева нису дефинисани, то није дефинисано ни за парно q и негативно a.
Степеновање матрица идентично је по дефиницији степеновању реалних бројева са природним експонентима. Дефинисано је за квадратне матрице и природан број као експонент.
^Stifel, Michael (1544). Arithmetica integra. Nuremberg: Johannes Petreius. стр. 235v. Stifel was trying to conveniently represent the terms of geometric progressions. He devised a cumbersome notation for doing that. In Liber III, Caput III: De Algorithmo numerorum Cossicorum (Book 3, Chapter 3: On Algorithms of Algebra), on page 235 verso, he presented the notation for the first eight terms of a geometric progression (using 1 as a base) and then he wrote: "Quemadmodum autem hic vides, quemlibet terminum progressionis cossicæ, suum habere exponentem in suo ordine (ut 1ze habet 1. 1ʓ habet 2 &c.) sic quilibet numerus cossicus, servat exponentem suæ denominationis implicite, qui ei serviat & utilis sit, potissimus in multiplicatione & divisione, ut paulo inferius dicam." (However, you see how each term of the progression has its exponent in its order (as 1ze has a 1, 1ʓ has a 2, etc.), so each number is implicitly subject to the exponent of its denomination, which [in turn] is subject to it and is useful mainly in multiplication and division, as I will mention just below.) [Note: Most of Stifel's cumbersome symbols were taken from Christoff Rudolff, who in turn took them from Leonardo Fibonacci's Liber Abaci (1202), where they served as shorthand symbols for the Latin words res/radix (x), census/zensus (x2), and cubus (x3).]
^Descartes, René (1637). „La Géométrie”. Discourse de la méthode [...]. Leiden: Jan Maire. стр. 299. „'Et aa, ou a2, pour multiplier a par soy mesme; Et a3, pour le multiplier encore une fois par a, & ainsi a l'infini'” (And aa, or a2, in order to multiply a by itself; and a3, in order to multiply it once more by a, and thus to infinity).
^Euler, Leonhard (1748). Introductio in analysin infinitorum (на језику: латински). I. Lausanne: Marc-Michel Bousquet. стр. 69, 98—99. „Primum ergo considerandæ sunt quantitates exponentiales, seu Potestates, quarum Exponens ipse est quantitas variabilis. Perspicuum enim est hujusmodi quantitates ad Functiones algebraicas referri non posse, cum in his Exponentes non nisi constantes locum habeant.”
Литература
Cunnington, Susan, The Story of Arithmetic: A Short History of Its Origin and Development, Swan Sonnenschein, London, 1904