இடைவெளி (கணிதம்)கணிதத்தில் ஒரு (மெய்யெண்) இடைவெளி ((real) interval) என்பது, தனது உறுப்புகளான இரு மெய்யெண்களுக்கு இடைப்பட்ட எந்தவொரு மெய்யெண்ணும் அதன் மற்றொரு உறுப்பாகவே அமைகின்ற பண்புடைய மெய்யெண்களின் கணம் ஆகும். சில எடுத்துக்காட்டுக்கள்:
குறியீடுகள்a, b என்ற இரு எண்களுக்கிடையுள்ள எண்களின் (அவ்விரு எண்கள் உட்பட) இடைவெளியின் குறியீடு:
முனைப்புள்ளிகள் நீங்கலாகஏதாவதொரு முனைப்புள்ளி நீங்கிய இடைவெளியைக் குறிப்பதற்கு, அந்த முனையிலுள்ள சதுர அடைப்புக்குறிக்குப் பதில் பிறை அடைப்புக்குறி பயன்படுத்தப்படுகிறது: (a, a), [a, a), (a, a] ஆகிய இடைவெளிகள் வெற்றுக்கணத்தைக் குறிக்கின்றன; [a, a] இடைவெளி a எண்ணை மட்டும் கொண்டிருக்கும். a > b எனில் மேலே தரப்பட்டுள்ள நான்கு இடைவெளிகளுமே வெற்றுக் கணத்தைக் குறிக்கும். இடைவெளியின் இருவகையான குறியீடுகளும் கணிதத்தில் வேறுசில இடங்களில் பயன்படுத்தப்படும் குறியீடுகளுடன் ஒத்ததாக அமைகின்றன. எடுத்துக்காட்டாக, இக்குறியீடு, கணக்கோட்பாட்டில் வரிசைச் சோடிகளைக் குறிக்கிறது; பகுமுறை வடிவவியலில் ஒரு புள்ளியின் ஆயதொலைவுகளைக் குறிக்கிறது; ஒரு திசையனைக் குறிக்கிறது; மேலும் ஒரு சிக்கலெண்ணையும் குறிக்கிறது.
(a, b) இடைவெளியின் நிரப்பியைக் குறிப்பதற்கு சில கணித எழுத்தாளர்கள் என்ற குறியீட்டைப் பயன்படுத்துகிறார்கள். அதாவது, இது a மற்றும் அதைவிடச் சிறிய மெய்யெண்களையும், b மற்றும் அதைவிடப் பெரிய மெய்யெண்களையும் கொண்ட இடைவெளி என்பதாகும். முடிவிலியான முனைப்புள்ளிகள்இடைவெளியின் இருவிதமானக் குறியீடுகளிலும், ஒரு முனையில் வரம்பு கிடையாது என்பதைக் குறிக்க முடிவிலியைப் பயன்படுத்தலாம். அதாவது அல்லது (அல்லது இரண்டையுமே) பயன்படுத்தலாம். எடுத்துக்காட்டாக,
முழுஎண் இடைவெளிகள்a , b என்பன இரு முழு எண்கள் எனில் அவற்றுக்கு இடையேயுள்ள முழு எண்களின் (அவை இரண்டும் உட்பட) இடைவெளியானது, [a .. b] அல்லது {a .. b} அல்லது a .. b என சில இடங்களில் குறிக்கப்படுகிறது. கீழ் அல்லது மேல் முனைப்புள்ளியை முடிவுறு எண்ணாகக் கொண்ட முழுஎண் இடைவெளி எப்பொழுதும் அம்முனைப்புள்ளியையும் உள்ளடக்கியதாக இருக்கும். எனவே முனைப்புள்ளிகள் சேர்க்கப்படவில்லை எனபதை எழுத வேண்டிய முறை:
சொல்லியல்திறந்த இடைவெளிமுனைப்புள்ளிகளை உள்ளடக்காத இடைவெளி திறந்த இடைவெளி எனப்படும். இந்த இடைவெளியைக் குறிப்பதற்குப் பிறை அடைப்புக்குறிகள் பயன்படுத்தப்படுகின்றன. எடுத்துக்காட்டு: திறந்த இடைவெளி (0,1), 0 ஐ விட பெரிய எண்களையும் 1 ஐ விடச் சிறிய எண்களையும் கொண்டது. மூடிய இடைவெளிமுனைப்புள்ளிகளை உள்ளடக்கிய இடைவெளி மூடிய இடைவெளி எனப்படும். இந்த இடைவெளியைக் குறிப்பதற்குச் சதுர அடைப்புக்குறிகள் பயன்படுத்தப்படுகின்றன. எடுத்துக்காட்டு: மூடிய இடைவெளி [0,1], 0 மற்றும் 0 ஐ விட பெரிய எண்களையும், 1 மற்றும் 1 ஐ விடச் சிறிய எண்களையும் கொண்டது. சிதைந்த இடைவெளிஒரேயொரு மெய்யெண் மட்டும் கொண்டுள்ள ஓருறுப்புக் கணம் சிதைந்த இடைவெளி எனப்படும். சில கணித எழுத்தாளர்கள், வெற்றுக்கணத்தையும் இந்த வரையறையில் சேர்த்துக் கொள்வர். தகு இடைவெளிவெற்றாகவோ அல்லது சிதைந்ததாகவோ இல்லாத ஒரு மெய்யெண் இடைவெளி, தகு இடைவெளி எனப்படும். இந்த இடைவெளி, முடிவுறா எண்ணிக்கையிலான உறுப்புகளைக் கொண்டிருக்கும். இடது மற்றும் வலது வரம்புடைய இடைவெளிஓர் இடைவெளியின் எல்லா உறுப்புகளையும் விடச் சிறியதான ஒரு மெய்யெண் இருக்குமாயின் அந்த இடைவெளி இடது-வரம்புடைய இடைவெளி (left-bounded) என்றும், மாறாக எல்லா உறுப்புகளையும் விடப் பெரியதான ஒரு மெய்யெண் இருக்குமாயின் அந்த இடைவெளி வலது-வரம்புடைய இடைவெளி (right-bounded) என்றும் அழைக்கப்படும். ஓர் இடைவெளி இடது வரம்புடைய இடைவெளியாகவும், வலது-வரம்புடைய இடைவெளியாகவும் இருந்தால் அது வரம்புடைய இடைவெளி (bounded) எனப்படும். இல்லையெனில் அது வரம்பில்லாத இடைவெளி எனப்படும். பொதுவாக, வரம்புடைய இடைவெளிகள் முடிவுறு இடைவெளிகள் எனவும் அழைக்கப்படும். வரம்புடைய இடைவெளிகளின் விட்டங்கள் (முனைப்புள்ளிகளின் வித்தியாசத்தின் தனி மதிப்பு) முடிவுறு மதிப்புகளாக இருக்கும். இந்த மதிப்பு, அந்த இடைவெளியின் நீளம் அல்லது அகலம் அல்லது அளவை எனப்படும். வரம்பில்லா இடைவெளிகளின் நீளம் +∞; வெற்று இடைவெளியின் நீளம் 0 அல்லது வரையறுக்காததாகக் கொள்ளப்படும்.. a , b ஐ முனைப்புள்ளிகளாக உடைய வரம்புடைய இடைவெளியின் மையம் (a + b)/2; அதன் ஆரம் |a − b|/2. வரம்பில்லா இடைவெளிகளுக்கும் வெற்று இடைவெளிகளுக்கும் மையமோ ஆரமோ வரையறுக்கப்படவில்லை. வகைப்பாடுகீழே தரப்பட்டுள்ளவாறு மெய்யெண் இடைவெளிகளை பதினோரு வகைகளாகப் பிரிக்கலாம். a , b மெய்யெண்கள்; :
நீட்டிக்கப்பட்ட மெய்யெண் கோட்டின் இடைவெளிகள்சில சூழ்நிலைகளில் இடைவெளிகளை நீட்டிக்கப்பட்ட மெய்யெண் கோட்டின் உட்கணங்களாக வரயறுக்கலாம். −∞, +∞ இரண்டையும் சேர்த்து விரிவுபடுத்தப்பட்ட மெய்யெண்கோடு நீட்டிக்கப்பட்ட மெய்யெண்கோடு எனப்படுகிறது. [−∞, b] , [−∞, b) , [a, +∞] , (a, +∞] ஆகிய குறியீடுகள் இவ்விளக்கத்தால் பொருளுள்ளவையாகவும் வெவ்வேறானவையாகவும் இருக்கும். குறிப்பாக,
, சாதாரண மெய்யெண் கோட்டையும்
,நீட்டிக்கப்பட்ட மெய்யெண் கோட்டையும் குறிக்கும். இடைவெளிகளை நீட்டிக்கப்பட்ட மெய்யெண் கோட்டின் உட்கணங்களாகக் கருதுவதால் மேலேயுள்ள வரையறைகளிலும் பெயர்களிலும் குழப்பங்கள் ஏற்படலாம். எடுத்துக்காட்டாக (−∞, +∞) = என்ற இடைவெளி சாதாரண மெய்யெண்கோட்டில் மூடிய இடைவெளியாகவும், நீட்டிக்கப்பட்ட மெய்யெண்கோட்டில் திறந்த இடைவெளியாகவும் இருக்கும். பண்புகள்
இரு இடைவெளிகளின் வெட்டு வெற்றுக்கணமாக இல்லாமல் இருந்தால், இருந்தால் மட்டுமே, அவற்றின் ஒன்றிப்பு ஓர் இடைவெளியாக இருக்கும். அதாவது, ஒரு இடைவெளியின் திறந்த முனை மற்றொரு இடைவெளியின் மூடிய முனையாக இருக்க வேண்டும்.
x, இன் உட்புறத்தில் இருந்தால், இருந்தால் மட்டுமே, இடைவெளிகள் இரண்டும் வெற்றற்றவையாக இருக்க முடியும். பொதுமைப்படுத்தல்பல-பரிமாண இடைவெளிகள்-பரிமாண இடைவெளி என்பது இன் ஓர் உட்கணமாகும்.
சிக்கலெண்களின் இடைவெளிசிக்கலெண் தளத்தின் பகுதிகளாக சிக்கலெண்களின் இடைவெளிகளை வரையறுக்கலாம். இவை செவ்வகங்களாகவோ வட்டத் தகடுகளாகவோ இருக்கும்.[1] மேற்கோள்கள்
வெளி இணைப்புகள்
|
Portal di Ensiklopedia Dunia