எதிரொளிப்பு சமச்சீர்மை![]() எதிரொளிப்பு சமச்சீர்மை அல்லது எதிரொளிப்பு சமச்சீர் (Reflection symmetry) என்பது ஒரு எதிரொளிப்பின்போது ஒரு பொருள் கொண்டிருக்கக்கூடிய பண்பாகும்.ஒரு வடிவம் அல்லது பொருளானது எதிரொளிக்கப்படும்போது எந்தவொரு மாற்றமும் அடையாத நிலையில் அப்பொருள் எதிரொளிப்புச் சமச்சீர்மை கொண்டுள்ளதாகக் கூறப்படுகிறது. இச்சமச்சீர்மை கோட்டுச் சமச்சீர்மை (line symmetry), ஆடி சமச்சீர்மை (mirror symmetry), ஆடி-எதிருரு சமச்சீர்மை (mirror-image symmetry) எனவும் அழைக்கப்படுகிறது. எதிரொளிப்புச் சமச்சீர்மை, இருபரிமாணத்தில் கோட்டுச் சமச்சீர்மையாகவும், முப்பரிமாணத்தில் முப்பரிமாண வெளியில் தளச் சமச்சீர்மையாகவும் அமைகிறது. எதிரொளிப்பின்போது மூலவுருவையும் எதிருருவையும் வேறுபடுத்துக்காட்ட முடியாதவாறு அமையும் சமச்சீர்மையானது, ஆடி சமச்சீர்மை எனப்படும். இருசமபக்க சமச்சீருடைய உயிரினங்கள் அனைத்தும் வகிட்டு வசத்தில் எதிரொளிப்பு சமச்சீர்மையுடையவை. சமச்சீர்மை, சிலவகைக் கட்டிடக்கலைகளின் அடிப்படையமைப்பாக உள்ளது[1] சமச்சீர் சார்புஎதிரொளிப்பு, சுழற்சி, பெயர்ச்சி போன்ற ஏதேனுமொரு செயலுக்குட்படும்போது ஒரு கணிதப் பொருளின் ஏதேனும் சில பண்புகள் மாறாமல் காக்கப்படுமானால் அக்கணிதப் பொருள் அச்செயலைப் பொறுத்து சமச்சீர்மை உடையதாகும்.[2] ஒரு கணிதப் பொருளின் ஒரு குறிப்பிட்ட பண்பினைக் காக்கும் செயல்கள் அனைத்தும் ஒரு குலமாக அமையும். ஒரு குலத்திலுள்ள ஏதேனும் சில செயல்களுக்குட்படுத்துவதன் மூலம் ஒரு பொருளிலிருந்து மற்றொரு பொருளைப் பெறமுடியுமானால் அவ்விரு பொருட்களும் அக்குலத்தைப் பொறுத்து ஒன்றுக்கொன்று சமச்சீரானவையாகும். இருபரிமாண வடிவின் சமச்சீர் சார்பு ஒரு கோடாகும் (அச்சு). இக்கோட்டிற்கு வரையப்படும் ஒவ்வொரு செங்குத்தும் எடுத்துக்கொண்ட வடிவை அச்சிலிருந்து 'd' அளவு செங்குத்துத்தொலைவில் சந்திக்குமானால், அச்சுக்கு மறுதிசையில் வரையப்படும் செங்குத்தும் அதேயளவு செங்குத்துத்தொலைவில் அவ்வடிவைச் சந்திக்கும். சமச்சீர் சார்பின் அச்சின் வழியாக அவ்வடிவை இரண்டாக மடிக்கும்போது இவ்விரு பாகங்களும் முற்றொத்தவையாக, ஒன்றுக்கொன்று ஆடி எதிருருக்களாக அமையும்.[2] ஒரு சதுரத்தை அதன் விளிம்புகள் ஒன்றோடொன்று பொருந்துமாறு நான்குவிதங்களில் மடிக்க முடியுமென்பதால் சதுரத்திற்கு நான்கு சமச்சீர் அச்சுகள் உள்ளன. ஒரு வட்டத்திற்கு முடிவிலா எண்ணிக்கையிலான சமச்சீர் அச்சுகள் உள்ளன. சமச்சீரான வடிவவியல் வடிவங்கள்
முக்கோணங்களில், இருசமபக்க முக்கோணங்கள் எதிரொளிப்புச் சமச்சீர் உடையவை. நாற்கரங்களில் பட்டங்கள், குழிவு பிரமிடு அமைப்புகள் (concave deltoid), சாய்சதுரங்கள்,[3] மற்றும் இருசமபக்க சரிவங்கள் எதிரொளிப்பு சமச்சீருடையவை. அனைத்து இரட்டைப் பக்கப் பல்கோணங்களும் இருவிதமான சமச்சீர் அச்சுக்களுடையவை. அப்பல்கோணங்களின் ஒவ்வொரு சோடி எதிரெதிர் உச்சிகளின் வழியே செல்லும் கோடுகள் ஒருவகை சமச்சீர் அச்சுக்களாகவும், பல்கோணங்களின் ஒவ்வொரு சோடி எதிரெதிர் விளிம்புகளின் வழிச்செல்லும் கோடுகள் மற்றொரு வகையான சமச்சீர் அச்சுகளாகவும் இருக்கும். உயிரினங்களில்இருபக்கச் சமச்சீர்மையுடைய உயிரினங்கள் அவற்றின் உடலை குத்துவாக்காக இடம் மற்றும் வலப்பக்க அரைப்பகுதிகளாகக் பிரிக்கும் வகிட்டுவசத்தில் எதிரொளிப்புச் சமச்சீரானவையாகும். முன் நகர்விற்கும் வடிவமைப்பின் ஒழுங்கிற்கும் ஆதாரமாக இச்சமச்சீர்மை இருப்பதால் பெரும்பாலான உயினங்கள் இருபக்கச் சமச்சீர்மை கொண்டிருக்கின்றன.[4][5][6][7] கட்டிடக்கலையில்![]() கட்டிடக்கலையில் எதிரொளிப்புச் சமச்சீர்மை பயன்படுத்தப்படுகிறது புளோரன்சிலுள்ள தேவாலயத்தின் முகப்பு இச்சமச்சீர்மையுடன் அமைந்துள்ளதை அருகிலுள்ள படத்தில் காணலாம்.[8] கல்வட்டம் போன்ற பண்டைய அமைவுகளிலும் இச்சீர்மையைக் காணமுடியும்.[9] மேற்கோள்கள்
வெளியிணைப்புகள்
ஆதார நூற்பட்டியல்
|
Portal di Ensiklopedia Dunia