செயல் (கணிதம்)![]() – கூட்டல் – கழித்தல் – பெருக்கல் – வகுத்தல் கணிதத்தில் செயல் அல்லது கணிதச் செயல் (operation, Mathematical operation) என்பது, பூச்சியம் அல்லது அதற்கும் மேற்பட்ட உள்ளீடு மதிப்புகளைக் கணக்கிட்டு ஒரு வெளியீடு மதிப்பைப் பெறுவதாகும். செயற்படுத்தப்படும் கணிதப் பொருள்கள் செயலுட்படுத்திகள் அல்லது உள்ளீடுகள் எனப்படும். அச்செயலின் விளைவாகக் கிடைப்பது, மதிப்பு அல்லது விளைவு அல்லது வெளியீடு எனப்படும். ஒரு செயலானது, மிகச் சில உள்ளீடுகளை அல்லது இரண்டுக்கும் மேற்பட்ட உள்ளீடுகளைக் கொண்டிருக்கலாம். சேர்ப்புப் பண்பு, பரிமாற்றுத்தன்மை, தன்னடுக்கு, போன்ற பண்புகளில் சிலவற்றைக் கொண்டுள்ளதாகவும், சில பண்புகள் இல்லாதவையாகவும் ஒரு செயல் அமையலாம். ω என்ற செயல், ω : V → Y எனும் சார்பாக அமையும். இதில்,
பெரும்பாலும் செயல் என்ற சார்பின் ஆட்களமானது, இணையாட்களத்தின் அடுக்காக (ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட இணையாட்கள கணத்தின் நகல்களின் கார்ட்டீசியன் பெருக்கற்பலன்) அமையும்.[1] ஆனால் இது எல்லா வகையான செயல்களுக்கும் பொருந்தாது. ஒரு திசையனை, ஒரு திசையிலியால் பெருக்கும் செயல் இதற்கு எடுத்துக்காட்டாகும். வகைகள்ஓருறுப்புச் செயல்கள் ஓர் உள்ளீடு மட்டும் கொண்டிருக்கும். எடுத்துக்காட்டாக, எதிர்மமாக்கல் (negation), முக்கோணவியல் சார்புகள் ஓருறுப்புச் செயல்களாகும்.
ஈருறுப்புச் செயல்கள் இரு உள்ளீடுகளைக் கொண்டிருக்கும். எடுத்துக்காட்டாக, கூட்டல், கழித்தல், பெருக்கல், வகுத்தல், அடுக்கேற்றம் ஆகியவை ஈருறுப்புச் செயல்களாகும்.
எண்கள் தவிர்த்த பிற கணிதப் பொருள்களை உள்ளீடுகளாகக் கொண்டதாகவும் செயல்கள் அமையலாம். எடுத்துக்காட்டுகள்:
சில செயல்கள், எல்லா மதிப்புகளுக்கும் வரையறுக்கப்பட்டிருக்காது. எடுத்துக்காட்டுகள்:
எந்த மதிப்புகளுக்கெல்லாம் ஒரு செயல் வரையறுக்கப்பட்டுள்ளதோ, அந்த மதிப்புகளடங்கிய கணமானது அச்செயலின் ஆட்களம் எனவும், அச்செயலைச் செய்வதன் விளைவாகக் கிடைக்கக்கூடிய மதிப்புகளடங்கிய கணம் அச்செயலின் வீச்சு எனவும், வீச்சை உட்கணமாகக் கொண்ட கணம் இணையாட்களம் (கணிதம்) எனவும் அழைக்கப்படும். எடுத்துக்காட்டாக, மெய்யெண்களில் வர்க்கம் காணும் போது அனைத்து மெய்யெண்களின் வர்க்கங்களும் எதிரிலா எண்களாகவே இருக்கும். எனவே வர்க்கம் காணல் செயலின் ஆட்களமும் இணையாட்களமும் மெய்யெண் கணமாகவும், வீச்சாக எதிரிலா மெய்யெண்கள் கணமும் அமைகிறது.
ஒரு செயலின் உள்ளீடுகள், வெளியீடு வெவ்வேறான கணிதப் பொருட்களாக அமையலாம் எடுத்துக்காட்டுகள்:
இதில் திசையன்கள் உள்ளீடுகளாகவும், திசையிலி வெளியீடாகவும் உள்ளது. மேற்கோள்கள் |
Portal di Ensiklopedia Dunia