Гравітаційні хвилі (гідродинаміка)Гравітаційні хвилі — різновид хвиль на поверхні рідини, за яких деформовану поверхню рідини повертає до стану рівноваги сила тяжіння, пов'язана з перепадом висот гребенів і западин у гравітаційному полі. ![]() Вільні гравітаційні хвилі у водному шарі — хвилі, що з'являються під час руху по дну океану сейсмічних хвиль — хвиль Лява і хвиль Релея. Їх виявлено й досліджено 2019 року під час аналізу даних із глибоководних обсерваторій DONET, отриманих під час землетрусу й цунамі 11 березня 2011 року в Японії. Ці хвилі з'являлися більш ніж за годину до цунамі, збуджувані низькочастотними компонентами сейсмічних хвиль у районі крутих підводних схилів. Їх пікова амплітуда становила 3,5 см, період 170 с і довжина близько 22 км[1][2]. Загальні властивостіГравітаційні хвилі на поверхні рідини — це нелінійні хвилі. Точний математичний аналіз можливий лише в лінеаризованому наближенні і за відсутності турбулентності. Крім того, зазвичай мова йде про хвилі на поверхні ідеальної рідини. Результати точного розв'язання для цього випадку описано нижче. Гравітаційні хвилі на поверхні рідини не поперечні і не поздовжні. Під час коливань частинки рідини описують деякі криві, що переміщуються як у напрямку руху, так і поперек нього. У лінеаризованому наближенні ці траєкторії є колами. Це призводить до того, що профіль хвиль не синусоїдальний, а має характерні загострені гребені. Нелінійні ефекти виявляються, коли амплітуда хвилі стає порівнянною з її довжиною. Одним з характерних явищ у цьому режимі є поява зламів на вершинах хвиль. Крім того, з'являється можливість перекидання хвилі. Ці явища поки що не піддаються точному аналітичному розрахунку. Закон дисперсії для слабких хвильПоведінку хвиль малої амплітуди можна з хорошою точністю описати лінеаризованими рівняннями руху рідини. Для справедливості цього наближення необхідно, щоб амплітуда хвилі була істотно меншою як від довжини хвилі, так і від глибини водойми. Є дві граничні ситуації, для яких розв'язок задачі має найпростіший вигляд — це гравітаційні хвилі на мілкій воді і на глибокій воді. Гравітаційні хвилі на мілкій водіНаближення хвиль на мілкій воді справедливе в тих випадках, коли довжина хвилі значно перевищує глибину водойми. Класичний приклад таких хвиль — цунамі в океані: поки цунамі не вийшла на берег, вона є хвилею з амплітудою порядку декількох метрів і довжиною в десятки і сотні кілометрів, що істотно більше від глибини океану. Закон дисперсії і швидкості хвилі в цьому випадку має вигляд:
Такий закон дисперсії приводить до деяких явищ, які можна легко помітити на морському березі.
Гравітаційні хвилі на глибокій водіНаближення хвилі на глибокій воді справедливе, коли глибина водойми значно перевищує довжину хвилі. В цьому випадку для простоти розглядають нескінченно глибоку водойму. Це обґрунтовано, оскільки під час коливань поверхні реально рухається не вся товща води, а лише приповерхневий шар глибиною порядку довжини хвилі. Закон дисперсії і швидкості хвилі в цьому випадку має вигляд:
З виписаного закону випливає, що фазова і групова швидкість гравітаційних хвиль у цьому випадку виявляються пропорційними довжині хвилі. Іншими словами, довгохвильові коливання будуть поширюватися по воді швидше від короткохвильових, що приводить до низки цікавих явищ:
Гравітаційні хвилі в загальному випадкуЯкщо довжина хвилі порівнянна з глибиною басейну H, то закон дисперсії в цьому випадку має вигляд:
Деякі проблеми теорії гравітаційних хвиль на воді
Див. такожПримітки
Література
|
Portal di Ensiklopedia Dunia