Неформально, дотичне розшарування многовиду (в даному випадку кола) виходить при розгляді всіх дотичних просторів (зверху) і об'єднання їх гладко без перетинів (знизу)
Елемент тотального простору — це пара , де і . Дотичне розшарування має природну топологією (не топологією диз'юнктивного об'єднання) і гладку структуру, що перетворюють його на многовид. Розмірність дорівнює подвоєній розмірності .
Топологія і гладка структура
Якщо — -мірний многовид, то він має атласом карт , де — відкрита підмножина і
Ці локальні координати на породжують ізоморфізм між і для будь-якого . Можна визначити відображення
як
Ці відображення використовуються для визначення топології і гладкої структури на .
Підмножина з відкрита тоді і тільки тоді, коли — відкрите в для будь-якого . Ці відображення — гомеоморфізми відкритих підмножин і , тому вони утворюють карти гладкої структури на . Функції переходу на перетинах карт задаються матрицями Якобі відповідних перетворень координат, тому вони є гладкими відображеннями відкритих підмножин .
Дотичне розшарування — окремий випадок більш загальної конструкції, званої векторним розшаруванням. Дотичне розшарування -мірного многовиду можна визначити як векторне розшарування рангу над , функції переходу для якого задаються якобіаном відповідних перетворень координат.
Приклади
Найпростіший приклад отримуємо для . У цьому випадку дотичне розшарування тривіально і ізоморфно проєкції .
Одинична окружність . Її дотичне розшарування також тривіально і ізоморфно . Геометрично, воно є циліндром нескінченної висоти (дивись картинку вгорі).
Простий приклад нетривіального дотичного розшарування отримуємо на одиничній сфері , це дотичне розшарування нетривіально внаслідок теореми про причісуванні їжака.
На жаль зобразити можна тільки дотичні розшарування дійсної прямої і одиничної окружності , які обидва є тривіальними. Для двовимірних многовидів дотичне розшарування — це 4-вимірний многовид, тому його складно уявити.
Векторні поля
Векторне поле — це гладка векторна функція на многовиді , значення якої в кожній точці — вектор, дотичний до , тобто гладке відображення
таке, що образ, що позначається , лежить у — дотичному просторі в точці . Мовою локально тривіальних розшарувань, таке відображення називається перетином. Векторне поле на — це перетин дотичного розшарування над .
Множина всіх векторних полів над позначається . Векторні поля можна складати поточечно:
і множити на гладкі функції на
,
отримуючи нові векторні поля. Множина всіх векторних полів отримує при цьому структуру модуля над комутативною алгеброю гладких функцій на (позначається ).
Якщо є гладкою функцією, то операція диференціювання вздовж векторного поля дає нову гладку функцію . Цей оператор диференціювання має такі властивості:
Векторне поле на многовиді можна також визначити як оператор, котрий володіє перерахованими вище властивостями.
Локальне векторне поле на — це локальний перетин дотичного розшарування. Локальне векторне поле визначається тільки на якійсь відкритій підмножині з , при цьому в кожній точці з задається вектор з відповідного дотичного простору. Множина локальних векторних полів на утворює структуру, що називається пучком дійсних векторних просторів над .
Канонічне векторне поле на TM
На кожному дотичному розшаруванні можна визначити канонічне векторне поле. Якщо — локальні координати на , то векторне поле має вигляд
Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — Москва : Едиториал УРСС, 2003. — 416 с. — 1500 прим. — ISBN 5-354-00341-5.
Васильев В. А. Введение в топологию. — Москва : ФАЗИС, 1997. — 132 с. — ISBN 5-7036-0036-7.
John M. Lee. Introduction to Smooth Manifolds. — New York : Springer-Verlag, 2003. — ISBN 0-387-95495-3.
Jurgen Jost. Riemannian Geometry and Geometric Analysis. — Springer-Verlag, 2002. — ISBN 3-540-42627-2.