Класичні цефеїди (також відомі як цефеїди 1-го покоління, цефеїди 1-го типу, або змінні типу Дельти Цефея) — тип змінних зір із класу цефеїд. Це зоріпершого покоління, що пульсують із періодами від кількох днів до кількох тижнів. Амплітуда змін їх візуального блиску лежить у межах від кількох десятих зоряної величини до 2 величин.
Існує добре визначена залежність між світністю класичних цефеїд і періодом їхніх пульсацій[1][2], що робить їх надійними стандартними свічками для визначення галактичних і міжгалактичних відстаней[3][4][5][6]. Спостереження зір цього типу за допомогою телескопа Габбл дозволили уточнити значення сталої Габбла[3][4][6][7][8]. Також їх використовують для уточнення численних характеристик галактики Чумацький Шлях, такі як, наприклад, висота Сонця над галактичною площиною й місцева спіральна структура Галактики[5].
У галактиці Чумацький Шлях відомо близько 800 класичних цефеїд, а їх очікувана кількість перевищує 6 000. Також відомо кілька їх тисяч у Магелланових Хмарах та інших галактиках[9]. Телескоп Габбл вирізнив кількадесят класичних цефеїд у галактиці NGC 4603, відстань до якої становить 100 мільйонів світлових років[10].
Характеристики
Маса класичних цефеїд становить від 4 до 20 мас Сонця[11], а їх світність — приблизно від 1000 до 50 000 сонячних (у незвичайної зорі V810 Центавра — більш ніж 200 000)[12]. Вони можуть належати до спектральних класів F6 — K2 і бути яскравими гігантами або тьмяними надгігантами. Їх радіус лежить у межах від декількох десятків до декількох сотень сонячних. Чим більша світність зорі, тим вона більша й холодніша. Під час пульсацій змінюється й температура поверхні цефеїд, і їхній радіус (наприклад, у довгоперіодичної зорі I Кіля — на 25%), що призводить до зміни блиску на величину до 2m. Змінність помітніша на коротших хвилях[13].
Цефеїди можуть пульсувати в режимі нормальних коливань, перших обертонів, і рідше — у змішаному режимі. Пульсації на обертонах, вищих за перший, бувають рідко, але становлять значний науковий інтерес[2]. Вважають, що більшість класичних цефеїд пульсують в режимі нормальних коливань, хоча визначити режим за формою кривої блиску нелегко. Зорі, що пульсують на обертонах, мають більший розмір та більшу світність, ніж зорі з таким самим періодом, які пульсують в режимі нормальних коливань[14].
Зорі, що зараз є класичними цефеїдами, раніше були зорями головної послідовностіспектрального класу B (приблизно до B7, можливо, й пізніх підкласів класу O). Масивніші та гарячіші зорі стають яскравішими цефеїдами з довшими періодами. Припускають, що молоді зорі в нашій Галактиці, металічність яких близька до сонячної, до часу досягнення смуги нестабільності втратять так багато речовини, що їх періоди будуть 50 днів або менше. Зорі з нижчою металічністю, наприклад у Магеланових Хмарах, можуть втримати більше речовини й стати яскравішими цефеїдами з довшими періодами. Зорі популяції I із масою понад 20 сонячних, на думку астрономів, ніколи не досягають смуги нестабільності, а отже не стають цефеїдами[12].
Коли зоря помірної маси вперше залишає головну послідовність, вона перетинає смугу нестабільності дуже стрімко, поки гідрогенова оболонка згоряє. Коли ж у зорі з помірною масою запалюється гелієве ядро, вона описує на діаграмі Герцшпрунга—Рассела«блакитну петлю» й перетинає смугу нестабільності знову, спочатку при переході до вищих температур, а згодом при русі назад, у бік асимптотичного відгалуження гігантів. У деяких випадках зорі можуть перетинати смугу нестабільності вчетверте й уп'яте, коли починає горіти гелієва оболонка. За швидкістю зміни періоду цефеїди, а також за спектральними даними про вміст хімічних елементів, можна визначити вкотре зоря перетинає смугу нестабільності[15].
Криві блиску
Крива блиску Дельти Цефея
Зазвичай цефеїди мають асиметричні криві блиску зі швидким підняттям до максимуму, після якого йде повільне падіння до мінімуму (наприклад, Дельта Цефея). Це результат розбіжності фаз змін радіусу та температури і ознака того, що зоря пульсує в режимі нормальних коливань — найбільш типовому для цефеїд I типу. В деяких випадках на гладкій кривій блиску з'являється «горбик», де світність повільніше падає або навіть трохи зростає. Вважають, що він виникає через резонанс між нормальними коливаннями й другими обертонами. Найчастіше він буває на ділянці падіння блиску в зір з періодом десь 6 днів (наприклад, Ета Орла). При збільшенні періоду «горбик» переміщується в напрямку максимуму й може спричиняти подвійний максимум або ж зливатися з первинним максимумом у зір з періодом близько 10 днів (наприклад, Мекбуда). У зір з довшими періодами «горбик» може лежати на ділянці підняття блиску (наприклад X Лебедя), але якщо період довший від 20 днів, то резонанс зникає.
Невелика частка класичних цефеїд мають майже симетричні синусоїдальні криві блиску. Їх називають s-цефеїдами. Зазвичай вони мають менші амплітуди й часто короткі періоди. Гадають, що більшість з них пульсує на першому (наприклад, X Стрільця) або вищих обертонах, хоча подібну форму кривої блиску мають і деякі незвичні зорі, що, найімовірніше, пульсують на основному тоні (приміром, S Лисички). Очікують, що в нашій Галактиці пульсатори на перших обертонах мають лише короткі періоди, а в галактиках із меншою металічністю (наприклад, Магеланових Хмарах) можуть мати дещо довші. Також у Магеланових Хмарах частіше трапляються пульсатори на вищих обертонах і цефеїди, що пульсують на двох обертонах одночасно. Вони зазвичай мають дещо неправильні криві блиску з низькими амплітудами.[2][16]
Відкриття
Історичні криві блиску W Стрільця та Ети Орла
10 вересня 1784 року Едвард Піґотт помітив змінність Ети Орла, першої відомої представниці класичних цефеїд. Однак своєю назвою цей клас зір завдячує Дельті Цефея, змінність якої відкрив Джон Ґудрайк через кілька місяців. Дельта Цефея також є важливим калібратором співвідношення між періодом і світністю, оскільки відстань до неї є однією з найточніше визначених з-поміж інших цефеїд. Точно встановити відстань допомогла її належність до складу зоряного скупчення[17][18], а також точні вимірювання її паралакса телескопами Габбл та Гіппаркос[19].
Залежність між періодом і світністю
Залежність між періодом та світністю для цефеїд
Світність класичних цефеїд тісно пов'язана з їх періодом змінності. Чим довший період пульсацій, тим яскравіша зоря. Залежність між періодом та світністю класичних цефеїд відкрила Генрієтта Свон Лівітт 1908 року, коли досліджувала тисячі зір у Магелланових Хмарах[20]. Вона опублікувала цю роботу 1912 року[21]. Якщо відома залежність світності від періоду, то можна для цефеїди з відомим періодом встановити світність. Потім можна знайти до неї відстань за видимою зоряною величиною. Впродовж ХХ століття відношення між періодом та світністю калібрували багато астрономів, починаючи з Ейнара Герцшпрунга[22]. Однак калібрування було досить складним завданням. Цю задачу в межах галактики вдалось вирішити 2007 року, використавши точні HST-паралакси для 10 близьких цефеїд[23]. Крім того, 2008 року астрономи Європейської південної обсерваторії обчислили з точністю в межах 1% відстань до цефеїди RS Корми, використовуючи відбиття її світла від туманності, де вона розташована.[24] Але цей результат став предметом жвавих дискусій[25].
За спостереженнями тригонометричного паралакса 10 близьких цефеїд, зробленими телескопом «Габбл», встановлено таку залежність їх абсолютної величини від періоду:
де — період у добах[19][23]. Відстань до класичних цефеїд () можна розрахувати за такими рівняннями:
де та — видимі зоряні величини в ближньому інфрачервоному та видимому діапазоні відповідно.
Похибки визначення відстані за цефеїдами
Головні джерела похибки для відстані, визначеної за цефеїдами, — відмінність залежності світності від періоду у різних фотометричних смугах, вплив металічності на нульову точку та нахил кривої цієї залежності, а також домішки світла від сторонніх джерел та проблематичність визначення величини міжзоряного поглинання світла на таких відстанях. Всі ці проблеми активно досліджуються[12][4][7][27][28][29][30][31][32][33][34][35].
Ця похибка призводить до низької точності визначення сталої Габбла, оцінки якої варіюють від 60 до 80 (км/с)/Мпк[3][4][6][7][8]. Уточнення її значення — одна з найактуальніших задач астрономії, оскільки від цього залежить точність визначення інших космологічних параметрів Всесвіту[6][8].
↑Udalski, A.; Soszynski, I.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K. (1999). The Optical Gravitational Lensing Experiment. Cepheids in the Magellanic Clouds. IV. Catalog of Cepheids from the Large Magellanic Cloud. Acta Astronomica. 49: 223. arXiv:astro-ph/9908317. Bibcode:1999AcA....49..223U.
↑ абвSoszynski, I.; Poleski, R.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Szewczyk, O.; Ulaczyk, K. (2008). The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud. Acta Astronomica. 58: 163. arXiv:0808.2210. Bibcode:2008AcA....58..163S.
↑ абвFreedman, Wendy L.; Madore, Barry F.; Gibson, Brad K.; Ferrarese, Laura; Kelson, Daniel D.; Sakai, Shoko; Mould, Jeremy R.; Kennicutt, Robert C.; Ford, Holland C.; Graham, John A.; Huchra, John P.; Hughes, Shaun M. G.; Illingworth, Garth D.; Macri, Lucas M.; Stetson, Peter B. (2001). Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal. 553: 47. arXiv:astro-ph/0012376. Bibcode:2001ApJ...553...47F. doi:10.1086/320638.
↑ абвNgeow, C.; Kanbur, S. M. (2006). The Hubble Constant from Type Ia Supernovae Calibrated with the Linear and Nonlinear Cepheid Period-Luminosity Relations. The Astrophysical Journal. 642: L29. arXiv:astro-ph/0603643. Bibcode:2006ApJ...642L..29N. doi:10.1086/504478.
↑ абвMacri, Lucas M.; Riess, Adam G.; Guzik, Joyce Ann; Bradley, Paul A. (2009). The SH0ES Project: Observations of Cepheids in NGC 4258 and Type Ia SN Hosts. STELLAR PULSATION: CHALLENGES FOR THEORY AND OBSERVATION: Proceedings of the International Conference. AIP Conference Proceedings. 1170: 23. Bibcode:2009AIPC.1170...23M. doi:10.1063/1.3246452.
↑Szabados, L. (2003). Cepheids: Observational properties, binarity and GAIA. GAIA Spectroscopy: Science and Technology. 298: 237. Bibcode:2003ASPC..298..237S.
↑Soszyñski, I.; Poleski, R.; Udalski, A.; Szymañski, M. K.; Kubiak, M.; Pietrzyñski, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K. (2010). The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. VII. Classical Cepheids in the Small Magellanic Cloud. Acta Astronomica. 60: 17. arXiv:1003.4518. Bibcode:2010AcA....60...17S.
↑ абBenedict, G. Fritz; McArthur, B. E.; Fredrick, L. W.; Harrison, T. E.; Slesnick, C. L.; Rhee, J.; Patterson, R. J.; Skrutskie, M. F.; Franz, O. G.; Wasserman, L. H.; Jefferys, W. H.; Nelan, E.; Van Altena, W.; Shelus, P. J.; Hemenway, P. D.; Duncombe, R. L.; Story, D.; Whipple, A. L.; Bradley, A. J. (2002). Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator δ Cephei. The Astronomical Journal. 124 (3): 1695. arXiv:astro-ph/0206214. Bibcode:2002AJ....124.1695B. doi:10.1086/342014.
↑Leavitt, Henrietta S. (1908). 1777 variables in the Magellanic Clouds. Annals of Harvard College Observatory. 60: 87. Bibcode:1908AnHar..60...87L.
↑Leavitt, Henrietta S.; Pickering, Edward C. (1912). Periods of 25 Variable Stars in the Small Magellanic Cloud. Harvard College Observatory Circular. 173: 1. Bibcode:1912HarCi.173....1L.
↑Hertzsprung, Ejnar (1913). Über die räumliche Verteilung der Veränderlichen vom δ Cephei-Typus. Astronomische Nachrichten. 196: 201. Bibcode:1913AN....196..201H.
↑ абвBenedict, G. Fritz; McArthur, Barbara E.; Feast, Michael W.; Barnes, Thomas G.; Harrison, Thomas E.; Patterson, Richard J.; Menzies, John W.; Bean, Jacob L.; Freedman, Wendy L. (2007). Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations. The Astronomical Journal. 133 (4): 1810. arXiv:astro-ph/0612465. Bibcode:2007AJ....133.1810B. doi:10.1086/511980.
↑Majaess, Daniel; Turner, David; Moni Bidin, Christian; Mauro, Francesco; Geisler, Douglas; Gieren, Wolfgang; Minniti, Dante; Chené, André-Nicolas; Lucas, Philip; Borissova, Jura; Kurtev, Radostn; Dékány, Istvan; Saito, Roberto K. (2011). New Evidence Supporting Membership for TW Nor in Lyngå 6 and the Centaurus Spiral Arm. The Astrophysical Journal Letters. 741 (2): L27. arXiv:1110.0830. Bibcode:2011ApJ...741L..27M. doi:10.1088/2041-8205/741/2/L27.
↑Feast, M. W.; Catchpole, R. M. (1997). The Cepheid period-luminosity zero-point from HIPPARCOS trigonometrical parallaxes. Monthly Notices of the Royal Astronomical Society. 286: L1. Bibcode:1997MNRAS.286L...1F. doi:10.1093/mnras/286.1.l1.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑Stanek, K. Z.; Udalski, A. (1999). The Optical Gravitational Lensing Experiment. Investigating the Influence of Blending on the Cepheid Distance Scale with Cepheids in the Large Magellanic Cloud: 9346. arXiv:astro-ph/9909346. Bibcode:1999astro.ph..9346S.
↑Udalski, A.; Wyrzykowski, L.; Pietrzynski, G.; Szewczyk, O.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Zebrun, K. (2001). The Optical Gravitational Lensing Experiment. Cepheids in the Galaxy IC1613: No Dependence of the Period-Luminosity Relation on Metallicity. Acta Astronomica. 51: 221. arXiv:astro-ph/0109446. Bibcode:2001AcA....51..221U.
↑Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006). A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant. The Astrophysical Journal. 652 (2): 1133. arXiv:astro-ph/0608211. Bibcode:2006ApJ...652.1133M. doi:10.1086/508530.
↑Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I. (2008). Cepheids in External Galaxies. I. The Maser-Host Galaxy NGC 4258 and the Metallicity Dependence of Period-Luminosity and Period-Wesenheit Relations. The Astrophysical Journal. 684: 102. arXiv:0805.1592. Bibcode:2008ApJ...684..102B. doi:10.1086/589965.
↑Majaess, D.; Turner, D.; Lane, D. (2009). Type II Cepheids as Extragalactic Distance Candles. Acta Astronomica. 59: 403. arXiv:0909.0181. Bibcode:2009AcA....59..403M.
↑Scowcroft, V.; Bersier, D.; Mould, J. R.; Wood, P. R. (2009). The effect of metallicity on Cepheid magnitudes and the distance to M33. Monthly Notices of the Royal Astronomical Society. 396 (3): 1287. Bibcode:2009MNRAS.396.1287S. doi:10.1111/j.1365-2966.2009.14822.x.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
↑ абвBerdnikov, L. N. (2008). VizieR Online Data Catalog: Photoelectric observations of Cepheids in UBV(RI)c (Berdnikov, 2008). VizieR On-line Data Catalog: II/285. Originally published in: 2008yCat.2285....0B. 2285: 0. Bibcode:2008yCat.2285....0B.
↑Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaž (2010). A High-resolution, Multi-epoch Spectral Atlas of Peculiar Stars Including RAVE, GAIA , and HERMES Wavelength Ranges. The Astronomical Journal. 140 (6): 1758. arXiv:1009.5566. Bibcode:2010AJ....140.1758T. doi:10.1088/0004-6256/140/6/1758.
↑Andrievsky, S. M.; Luck, R. E.; Kovtyukh, V. V. (2005). Phase-dependent Variation of the Fundamental Parameters of Cepheids. III. Periods between 3 and 6 Days. The Astronomical Journal. 130 (4): 1880. Bibcode:2005AJ....130.1880A. doi:10.1086/444541.
↑Kreiken, E. A. (1953). The Density of Stars of Different Spectral Types. With 1 figure. Zeitschrift für Astrophysik. 32: 125. Bibcode:1953ZA.....32..125K.
↑Watson, Christopher (4 January 2010). S Sagittae. AAVSO Website. American Association of Variable Star Observers. Архів оригіналу за 12 Грудня 2020. Процитовано 22 травня 2015.
↑ абHouk, N.; Cowley, A. P. (1975). University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I. Declinations -90_ to -53_ƒ0. University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I. Declinations -90_ to -53_ƒ0. Bibcode:1975mcts.book.....H.