Рентгенівські пульсариРентге́нівські пульса́ри — космічні джерела змінного рентгенівського випромінювання, що надходить на Землю у вигляді періодично повторюваних імпульсів. Станом на 2000-й рік було відомо понад двадцять рентгенівських пульсарів. Їх періоди лежать у межах від 0,07 до 835 сек. Середня тривалість імпульсів становить половину періоду. Періоди зменшуються з часом, хоча водночас спостерігаються й хаотичні зміни[1]. Історія відкриттяВідкриття рентгенівських пульсарів, як окремого феномену, сталося 1971 року за даними, отриманими першою рентгенівською орбітальною обсерваторією UHURU[note 1]. Перший відкритий рентгенівський пульсар Центавр X-3 демонстрував не тільки регулярні пульсації яскравості з періодом близько 4,8 секунд, а й регулярну зміну цього періоду. Подальші дослідження довели, що спостережувана зміна періоду пульсацій у цій системі зумовлена ефектом Доплера — джерело пульсацій рухається орбітою в подвійній системі й періодично то наближається до земного спостерігача, то віддаляється від нього. Фізична природа рентгенівських пульсарівРентгенівські пульсари являють собою подвійні системи, одним з компонентів яких є нейтронна зоря, а другим — зоря, що заповнює свою порожнину Роша або зоря-гігант із потужним зоряним вітром, у результаті відбувається перетікання речовини зі звичайної зорі на нейтронну. Нейтронні зорі мають малий розмір (20-30 км у діаметрі) і надзвичайно високу густину, що близька до густини атомного ядра. Вважається, що нейтронні зорі утворюються в результаті спалахів наднових. Відбувається стрімкий колапс ядра зорі, яке перетворюється на нейтронну, а падіння зовнішньої оболонки на утворене ядро призводить до вибуху наднової. Під час стискання ядра внаслідок закону збереження моменту імпульсу, а також збереження магнітного потоку відбувається різке збільшення швидкості обертання й напруженості магнітного поля зорі. Велика швидкість обертання нейтронної зорі й потужні магнітні поля (1012—1013 Гс) є основними умовами виникнення феномену рентгенівського пульсара. У міру старіння нейтронної зорі її магнітне поле слабшає, і рентгенівський пульсар може стати барстером. Речовина утворює навколо нейтронної зорі акреційний диск. Однак, неподалік нейтронної зорі диск руйнується: іонізована речовина не може рухатися поперек силових ліній магнітного поля, натомість вона рухається вздовж ліній поля й випадає на поверхню нейтронної зірки на невеликих ділянках (~1 км[1]) поблизу магнітних полюсів. Утворюється так звана акреційна колона, розміри якої значно менші розмірів самої зорі[2]. Речовина, що випадає на поверхню нейтронної зорі, сильно розігрівається (T>108 K[1]) й починає випромінювати в рентгені. Пульсації випромінювання пов'язані з тим, що внаслідок обертання акреційна колона час від часу потрапляє в поле зору спостерігача. Речовина, що випадає на поверхню нейтронної зорі, поступово змінює її кутовий момент[1]. Споріднені явищаСпорідненими до рентгенівських пульсарів є поляри й проміжні поляри. Різниця між рентгенівськими пульсарами й полярами полягає в тому, що пульсар — це нейтронна зоря, а поляр — білий карлик. У білих карликів слабші магнітні поля й менша швидкість обертання. Примітки
Джерела
Посилання |
Portal di Ensiklopedia Dunia