Число перетинів (теорія вузлів)

Трилисник без симетрії 3-го порядку з позначеними перетинами
Таблиця всіх простих вузлів з сімома або менше перетинами (дзеркальні варіанти не включено)

В теорії вузлів число перетинів вузла — це найменше число перетинів на будь-який з діаграм вузла. Число перетинів є інваріантом вузла.

Приклади

Як приклад: тривіальний вузол має нульове число перетинів, число перетинів трилисника дорівнює 3, а число перетинів вісімки дорівнює 4. Більше немає вузлів з числом перетинів 4 і менше, і є тільки два вузли з числом перетинів 5, але число вузлів з конкретними числами перетинів швидко зростає в міру зростання числа перетинів.

Таблиці

Таблиці простих вузлів традиційно індексуються числом перетинів з додатковим описом, який саме вузол зі множини вузлів із заданим числом перетинів мають на увазі (це впорядкування не базується на будь-яких властивостях, за винятком торичних вузлів, для яких скручені вузли перелічують першими). Список починається з 31 (трилисник), 41 (вісімка), 51 52, 61, і так далі. Цей порядок істотно не змінився з часів Тейта, що опублікував таблицю 1877 року[1].

Адитивність

Є дуже малий прогрес у розумінні поведінки числа перетинів під час елементарних операцій на вузлах. Велике відкрите питання — чи є число перетинів адитивним відносно операції конкатенації. Також очікується, що сателітний вузол вузла K матиме більшу кількість перетинів, ніж K, але це не доведено.

Адитивність числа перетинів конкатенації вузлів доведена для особливих випадків, наприклад, якщо початкові вузли є альтернованими [2] або якщо вихідні вузли є торическими[3][4]. Марк Лакенбай довів, що існує константа N> 1, така що , але його метод, який використовує нормальні поверхні[en], не може поліпшити N до 1[5].

Застосування в біоінформатиці

Є дивний зв'язок між числом перетинів вузла і фізичною поведінкою вузлів ДНК. Для простих вузлів ДНК кількість перетинів є хорошим провісником відносної швидкості вузла ДНК електрофорезу гелю агарози. Переважно, більше число перетинів призводить до більшої відносної швидкості[6].

Пов'язані інваріанти

Див. також: Інваріант вузла

Є пов'язані поняття середнього числа перетинів[en] і асимптотичного числа перетинів. Обидва ці поняття визначають границі стандартного числа перетинів. Є гіпотеза, що асимптотичне число перетинів дорівнює числу перетинів.

Іншими числовими інваріантами вузла є число мостів, коефіцієнт зачеплення, число відрізків і число розв'язування.

Примітки

  1. Tait, 1898, с. 273—347.
  2. Adams, 2004, с. 69.
  3. Gruber, 2003.
  4. Diao, 2004, с. 857–866.
  5. Lackenby, 2009, с. 747—768.
  6. Jonathan, 1996, с. 39—58.

Література

  • Simon Jonathan. Energy functions for knots: Beginning to predict physical behavior // Mathematical Approaches to Biomolecular Structure and Dynamics / Jill P. Mesirov, Klaus Schulten, De Witt Sumners. — 1996. — Т. 82. — (The IMA Volumes in Mathematics and its Applications). — doi:10.1007/978-1-4612-4066-2_4.
  • P. G. Tait. On Knots I, II, III // Scientific papers. — Cambridge University Press, 1898. — Т. 1.
  • C. A. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. — American Mathematical Society, 2004. — ISBN 9780821836781.
  • H. Gruber. Estimates for the minimal crossing number. — 2003. — arXiv:math/0303273.
  • Yuanan Diao. The additivity of crossing numbers // Journal of Knot Theory and its Ramifications. — 2004. — Т. 13, вип. 7. — doi:10.1142/S0218216504003524.
  • Marc Lackenby. The crossing number of composite knots // Journal of Topology. — 2009. — Т. 2, вип. 4. — doi:10.1112/jtopol/jtp028.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya