Вісімка (теорія вузлів)![]() В теорії вузлів вісімка (чотириразовий вузол або вузол Лістинга) — це єдиний вузол з числом перетинів 4. Це найменше можливе число перетинів, за винятком тривіального вузла і трилисника. Вісімка є простим вузлом. Вперше розглянутий Лістингом у 1847 році. Походження назвиНазва походить від побутового вузла вісімка на мотузці, кінці якої з'єднані. ОписПросте параметричне подання вузла «вісімка» задається множиною точок (x,y,z), для яких де t — дійсна змінна. Вісімка є простим, альтернованим, раціональним[en] вузлом з відповідним значенням 5/2. Він є також ахіральним вузлом. Вісімка є розшарованим[en] вузлом. Це випливає з іншого, складнішого (але цікавішого) подання вузла:
де
Математичні властивостіВузол «вісімка» грав історично важливу роль (і продовжує її грати) в теорії 3-многовидів[en] . Десь в середині 1970-х, Вільям Терстон показав, що вісімка є гіперболічним вузлом шляхом розкладання його доповнення на два ідеальних гіперболічних тетраедри (Роберт Райлі і Троельс Йорґенсен, працюючи незалежно один від одного, до цього показали, що вісімка є гіперболічної в іншому сенсі). Ця конструкція, нова на той час, привела його до багатьох сильних результатів і методів. Наприклад він зміг показати, що всі, окрім десяти, хірургій Дена[en] на вузлі «вісімка» дають нехакенові[ru], такі, що не допускають розшарування Зейферта нерозкладні[en] 3-многовиди. Це був перший з таких результатів. Багато інших було відкрито шляхом узагальнення побудови Терстона для інших вузлів і зачеплень. Вісімка є також гіперболічним вузлом з найменшим можливим об'ємом 2,02 988…, згідно з роботою Чо Чунь (Chun Cao) і Роберта Маєрхофа (Robert Meyerhoff). З цієї точки зору вісімку можна розглядати як найпростіший гіперболічний вузол. Доповнення вісімки є подвійним накриттям многовиду Ґізекінґа[ru], який має найменший об'єм серед некомпактних гіперболічних 3-многовидів. Вузол «вісімка» і мереживний вузол (−2,3,7)[en] є двомя гіперболічними вузлами, для яких відомо більше шести особливих хірургій, хірургій Дена, які приводять до негіперболічних 3-многовиів. Вони мають 10 і 7 відповідно. Теорема Лекенбі (Lackenby) і Маєргофа, доведення якої спирається на гіпотезу про геометризацію і використання комп'ютерних обчислень, стверджує, що 10 є найбільшим можливим числом особливих хірургій для будь-яких гіперболічних вузлів. Однак досі не встановлено, чи є вісімка єдиним вузлом, на якому досягається межа 10. Добре відома гіпотеза стверджує, що нижня межа (за винятком двох згаданих вузлів) дорівнює 6.
ІнваріантиМногочлен Александера вісімки дорівнює многочлен Конвея дорівнює а многочлен Джонса дорівнює Симетрія відносно і у многочлені Джонса свідчить про ахіральність вісімки. Примітки
Література
Посилання
|
Portal di Ensiklopedia Dunia