伴随向量映射原理伴随向量映射原理(covector mapping principle)是泛函分析的基礎定理里斯表示定理中的一個特例。名稱是由Ross和其工作夥伴所命名[1][2][3][4][5][6]。伴随向量映射原理提供了運算型最优控制中,可以將离散化和對偶性(dualization)交換順序的條件。 說明假設要將庞特里亚金最大化原理應用在問題,會從給定的最佳控制問題產生一個边值问题。依照Ross的論點,此边值问题是庞特里亚金提昇(Pontryagin lift),表示為問題。 現在要離散化問題,這會產生問題,其中 表示離散化的點數。為了方便起見,有需要證明下式成立: 在1960年代Kalman等人[7]就已證明要求解會非常的困難。此困難性稱之為「複雜度咒詛」(curse of complexity)[8],是「維度咒詛」(dimensionality)的互補。 在1990年代開始的一系列論文中,Ross和Fahroo證明有更簡單求解問題(因此也包括問題)的方法,作法是先進行離散化(問題)再進行對偶(問題)。此作法需要很小心的進行,以確保解的一致性及收斂。伴随向量映射原理確保可以找到一個伴随向量的映射律,將問題的解映射到問題的解。 相關條目參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia