信息几何![]() 引言从历史上看,信息几何可追溯到卡利安普迪·拉达克里希纳·拉奥的工作,他首先将费希尔矩阵视为黎曼度量。[2][3]现代理论主要归功于甘利俊一,他的工作对该领域产生了重大影响。[4] 经典的信息几何将有参概率模型视作黎曼流形。对于这类模型,可自然选择出黎曼度量,即费希尔信息度量。在概率模型为指数族时,有可能用黑塞度量(即凸函数的势给出的黎曼度量)导出统计流形,这时流形会自然继承两个平面仿射联络,以及正规布雷格曼散度。历史上,许多工作都致力于研究这些例子的相关几何。在现代背景下,信息几何适用于更广泛的背景,包括非指数族、非参数统计,甚至是不从已知概率模型导出的抽象统计流形。这些结果结合了信息论、仿射微分几何、凸分析等众多领域的技术。 该领域的标准参考书是甘利俊一与长冈浩司的《信息几何方法》[5]及Nihat Ay等人的最新著作。[6]Frank Nielsen在调查报告中做了较温和的介绍。[7]2018年,《信息几何学》期刊正式创立,专门讨论该领域。 应用作为一个跨学科领域,信息几何已被广泛应用于各种领域,主要应用于统计分析、控制理论、神经网络、量子力学、信息论等领域。 下面是不完整的清单: 另见参考文献
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia