统计流形数学中,统计流形是每点都代表一概率分布的黎曼流形,为信息几何提供了研究对象。费希尔信息度量提供了流形上的度量张量。根据这定义,对数似然函数是可微映射,分数是包含映射。[1] 示例所有正态分布可视为2维参数空间,参数为期望与方差。由费希尔信息矩阵给出的黎曼度量可得统计流形,其几何模型是双曲几何。通过费希尔信息推断参数方程而非从似然函数出发,是绘制流形的一种方法。 统计流形的简单例子是物理学中的正则系综:是1维流形,温度T是坐标。对任何常温T,都有概率空间:因此对原子气体而言,它就是原子速度的概率分布,会随T的变化而变化。 另一个简单例子来自医学,即病人治愈概率分布与给药量的关系。在固定剂量下,有些病人的病情有所改善,有些则没有,这就是基本概率空间。若改变剂量,结果概率也会变化,因此剂量就是流形上的坐标。要成为微分流形,就要根据剂量的任意微小变化测量结果,这并不实际可行,除非已有了剂量-反映数学模型,其中剂量可以任意变化。 定义令X为可定向流形,使为X上的测度。等价地,令为关于的概率空间,其中σ-代数与概率。 X的统计流形S(X)定义为X上所有测度(σ-代数不变)。注意这空间是无穷维的,通常认为是弗雷歇空间。S(X)的点都是测度。 与其处理无穷维空间S(X),不如处理有限维子流形,由一组由光滑、连续变化的参数参数化的概率分布给出定义即可。也就是说,只考虑由参数选择的测度。若参数是n维的,那么子流形一般也是n维。所有有限维统计流形都可这样理解。[需要解释] 另见参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia