可微分编程可微分编程是一种编程范型,在其中数值计算程序始终可通过自动微分来求导数[1][2][3][4]。这允许了对程序中的参数的基于梯度优化,通常通过梯度下降。可微分编程广泛用于各种领域,特别是科学计算和人工智能[4]。 方式多数可微分编程框架是通过构造包含程序中的控制流和数据结构的图来进行工作的[5]。各种尝试一般可归入两组之中:
早期方式的局限在于,它们都是以适合于这些框架的风格书写求微分的代码,这限制了同其他程序的互操作性。新近的方式,通过从语言的语法或中间表示构造图来解决了这种问题,允许任意代码都是可求微分的[5][6]。 应用可微分编程已经应用于多个领域,比如在机器人学中结合深度学习和物理引擎,用可微分密度泛函理论解决电子结构问题,可微分光线追踪,图像处理和概率编程[11][12][13][14][15][4]。 参见引用
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia