希爾伯特第十九問題
希爾伯特第十九問題,是希爾伯特的23個問題之一,有關於變分法的問題,尤其是有關於位勢方程正則性的問題 位勢方程: 希爾伯特注意到了這個偏微分方程具有某種正則性(regularity),除此之外,還有一些偏微分方程也有這類的特性,他稱這些具有此特性的方程式為拉格朗日方程,他認為這些方程式的解是可解析的。這個問題在1904年由谢尔盖·伯恩施坦在巴黎大学上交的博士论文中得以解決,他證明了橢圓偏微分方程(位勢方程等拉格朗日方程為橢圓偏微分方程),只要符合某些條件,則它的解必是可解析的,並且在證明出現後,希爾伯特第十九問題、第二十問題及第二十三問題被整合,並且有了相當程度的推廣。 參見
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia