无偏博弈在组合博弈论裡,无偏博弈是一类任意局势对于游戏双方都是平等的回合制双人游戏。这里平等的意思是所有可行的走法仅仅依赖于当前的局势,而与现在正要行动的是哪一方无关。换句话说,两个游戏者除了先后手之外毫无区别。此外,它们还要满足一些组合游戏的基本条件:
即使常见的棋類如象棋、围棋、五子棋等抽象策略遊戲等能符合以上三条规定(可能需要附加一些防止无限循环的规则),但都不是无偏博弈,因为它们不是共用棋子,双方走法因而要造成局势的不同变化。但是如果定义五子棋的一个变种:双方都共用棋子,先连成5子一线算胜利,那么这个变种是无偏博弈。冰山棋雖共用棋子,但因為採用計分的勝利規則,不是无偏博弈。 根据斯普莱格–格隆第定理,每个无偏博弈的特定局势都对应着一个尼姆数。这一定理是对无偏博弈进行分析的主要工具。 參考文献
相关链接以下网站上有在线的无偏博弈可以试玩。
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia