算术几何
在数学中,算术几何(arithmetic geometry)大致是从代数几何到数论问题的技术的应用[1]。算术几何围绕着丟番圖几何,这是代数簇有理点的研究[2][3]。 用更抽象的术语来说,算术几何可以定义为对整数环的譜内的有限概形(scheme)方案的研究[4]。 概述算术几何主要的研究对象是有理点:即多项式方程组在代数数域、有限域、P進數、或函数域上的解集。(研究对象是非代数闭域,所以不包括本来即为代數閉域的实数域。) 有理点的特征可以用衡量其算术复杂性的高度函数(height function)来表示。[5] 随着代数几何的现代抽象发展,当前的主要的研究方向是在非代数闭域上定义的代数簇的结构。在有限域上,平展上同调(Étale cohomology)提供了与代数簇相关的拓扑不变量[6]。霍奇理论提供了工具来检查复数上的上同调性质如何扩展到P進數上[7]。 历史算术几何原指从法尔廷斯(Faltings,G.)、奎伦(Quillen,D.G.)等的算术曲面上黎曼-罗赫定理开始的一系列研究工作,现在一般指所有以数论为背景或目的的代数几何。在算术几何中许多学科起着重要作用,并且相互交叉和渗透,包括数论、模形式、表示论、代数几何、代数数论、李群、多复变函数论、黎曼面、K理论等,所以,它是典型的边缘学科。丢番图方程是算术几何的一个重要课题,其中的问题可以自然地用几何语言表达。在许多著名问题如莫德尔猜想、费马大定理等的研究中,都表明几何方法的必要性。这正是算术几何的生命力所在。 ![]() 参阅参考资料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia