霍普夫代數在數學中,霍普夫代數(英文: Hopf algebra)是一類雙代數,亦即具有相容的結合代數與餘代數結構的向量空間,配上一個對極映射,後者推廣了群上的逆元運算 。霍普夫代數以數學家海因茨·霍普夫命名,此類結構廣見於代數拓撲、群概形、群論、量子群等數學領域。 定義所謂霍普夫代數,是指一個域 上的雙代數 ,配上一個線性映射 (稱為對極映射),使得下述圖表交換: 利用 Sweedler 記號,此定義亦可表為 對極映射可理解為 對卷積之逆,故其若存在必唯一。當 ,則稱 為對合的;交換或餘交換霍普夫代數必對合。 根據定義,有限維霍普夫代數的對偶空間也帶有自然的霍普夫代數結構。 例子群代數. 設 為群,可賦予群代數 下述霍普夫代數結構: 有限群上的函數. 設 為有限群,置 為所有 的函數,並以逐點的加法與乘法使之成為結合代數。此時有自然的同構 。定義: 仿射代數概形的座標環:處理方式同上。 泛包絡代數. 假設 是域 上的李代數,置 為其泛包絡代數,定義: 後兩條規則與交換子相容,因此可唯一地延拓至整個 上。 李群的上同調李群的上同調代數構成一個霍普夫代數,其代數結構由上同調的上積給出,餘代數結構則來自群乘法 ,由此導出 對極映射來自 。這是霍普夫代數的歷史起源,事實上,霍普夫藉著研究這種結構,得以證明李群上同調的結構定理: 定理(霍普夫,1941年)[1].
量子群與非交換幾何上述所有例子若非交換便是餘交換的。另一方面,泛包絡代數的某些「變形」或「量子化」可給出非交換亦非餘交換的例子;這類霍普夫代數常被稱為量子群,儘管嚴格而言它們並不是群。這類代數在非交換幾何中相當重要:一個仿射代數群可以由其座標環構成的霍普夫代數刻劃,而這些霍普夫代數的變形則可設想為某類「量子化」了的代數群(實則非群)。 文獻
註記 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia