立方体のランダムな頂点を初期解としたとき、十文字法は平均でD回の頂点を訪れることを1994年福田(英語版)、並木によって主張された[6][7]。これは容易に確かめることができ、単体法も立方体に対して平均 D 回の反復で終了する[8][注釈 2]。単体法と同様に、十文字法は3次元の立方体の頂点を平均3回訪れる。
^ abKlee, Victor; Minty, George J. (1972). “How good is the simplex algorithm?”. In Shisha, Oved. Inequalities III (Proceedings of the Third Symposium on Inequalities held at the University of California, Los Angeles, Calif., September 1–9, 1969, dedicated to the memory of Theodore S. Motzkin). New York-London: Academic Press. pp. 159–175. MR332165
^ abまた単体法も多面体の探索に平均でD回の反復かかるBorgwardt (1987): Borgwardt, Karl-Heinz (1987). The simplex method: A probabilistic analysis. Algorithms and Combinatorics (Study and Research Texts). 1. Berlin: Springer-Verlag. pp. xii+268. ISBN978-3-540-17096-9. MR868467
^ abBland, Robert G. (1977-05). “New finite pivoting rules for the simplex method”. Mathematics of Operations Research2 (2): 103–107. doi:10.1287/moor.2.2.103. JSTOR3689647. MR459599.
^Cottle, R. W.; Pang, J.-S.; Venkateswaran, V. (1989年3-4月). “Sufficient matrices and the linear complementarity problem”. Linear Algebra and Its Applications114–115: 231–249. doi:10.1016/0024-3795(89)90463-1. MR986877.
Avis, David; Fukuda, Komei (1992-12). “A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra”. Discrete and Computational Geometry8 (ACM Symposium on Computational Geometry (North Conway, NH, 1991) number 1): 295–313. doi:10.1007/BF02293050. MR1174359.
Fukuda, Komei; Namiki, Makoto (March 1994). “On extremal behaviors of Murty's least index method”. Mathematical Programming64 (1): 365–370. doi:10.1007/BF01582581. MR1286455.
Fukuda, Komei; Terlaky, Tamás (1997). Liebling, Thomas M.; de Werra, Dominique. eds. “Criss-cross methods: A fresh view on pivot algorithms”. Mathematical Programming, Series B79 (Papers from the 16th International Symposium on Mathematical Programming held in Lausanne, 1997, number 1–3): 369–395. doi:10.1007/BF02614325. MR1464775. Postscript preprint.
Klafszky, Emil; Terlaky, Tamás (June 1991). “The role of pivoting in proving some fundamental theorems of linear algebra”. Linear Algebra and Its Applications151: 97–118. doi:10.1016/0024-3795(91)90356-2. MR1102142.
Roos, C. (1990). “An exponential example for Terlaky's pivoting rule for the criss-cross simplex method”. Mathematical Programming. Series A 46 (1): 79–84. doi:10.1007/BF01585729. MR1045573.
Terlaky, T. (1985). “A convergent criss-cross method”. Optimization: A Journal of Mathematical Programming and Operations Research16 (5): 683–690. doi:10.1080/02331938508843067. ISSN0233-1934. MR798939.
Terlaky, Tamás; Zhang, Shu Zhong (1993). “Pivot rules for linear programming: A Survey on recent theoretical developments”. Annals of Operations Research46–47 (Degeneracy in optimization problems, number 1): 203–233. doi:10.1007/BF02096264. ISSN0254-5330. MR1260019.
Wang, Zhe Min (1987). “A finite conformal-elimination free algorithm over oriented matroid programming”. Chinese Annals of Mathematics (Shuxue Niankan B Ji). Series B 8 (1): 120–125. ISSN0252-9599. MR886756.