^ abRavindra K. Ahuja; Thomas L. Magnanti & James B. Orlin (1993). Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc.. ISBN978-0-13-617549-0
^Morton Klein (1967). “A primal method for minimal cost flows with applications to the assignment and transportation problems”. Management Science14 (3): 205–220. doi:10.1287/mnsc.14.3.205.
^Refael Hassin (1983). “The minimum cost flow problem: A unifying approach to existing algorithms and a new tree search algorithm”. Mathematical Programming25: 228–239. doi:10.1007/bf02591772.
^Thomas R. Ervolina & S. Thomas McCormick (1993). “Two strongly polynomial cut cancelling algorithms for minimum cost network flow”. Discrete Applied Mathematics4 (2): 133–165. doi:10.1016/0166-218x(93)90025-j.
^Andrew V. Goldberg & Robert E. Tarjan (1989). “Finding minimum-cost circulations by canceling negative cycles”. Journal of the ACM36 (4): 873–886. doi:10.1145/76359.76368.
^Jack Edmonds & Richard M. Karp (1972). “Theoretical improvements in algorithmic efficiency for network flow problems”. Journal of the ACM19 (2): 248–264. doi:10.1145/321694.321699.
^Goldberg, Andrew V. (1990). “Finding minimum-cost circulations by successive approximation”. Mathematics of Operations Research15 (3): 430–466. doi:10.1287/moor.15.3.430.