因数定理![]() 因数定理(いんすうていり、英: factor theorem)とは、多項式の根から元の多項式を因数分解することができるという定理である。因数定理は剰余の定理の特別の場合になっている[1]。 概要多項式の因数分解→詳細は「多項式の因数分解」を参照
多項式を一次式の積に因数分解するのは、「多項式の根を求めること」と本質的に等価な問題であることが分かる。 多項式の根が1つ求まれば、因数分解により、未知の根からなる多項式は次数は下がるため、根をより求めやすくなる。多項式の全ての根を求める手順は以下の通りである[3]:
多変数多項式の因数定理f を n 個の変数 X1, X2, …, Xn の多項式、g を X1 以外の n − 1 個の変数 X2, …, Xn の多項式とする。
これは f, g を X1 の多項式と見れば g は X1 に関して定数であるから、一変数の場合の因数定理から従う[4]。注目する変数を変えれば、各変数について同様の主張が成り立つ。 例えば f をヴァンデルモンドの行列式 とするとき f(X2, X2, …, Xn) = 0 が明らかに成り立つから、g(X2, …, Xn) ≔ X2 として因数定理を適用すれば、f は X1 − X2 で割り切れると分かる。同様の議論により、f は差積 ⊿(X1, X2, …, Xn) で割り切れると分かる。 例
を有理数の範囲で因数分解する。 有理根定理より、f(x) の根の候補は
このうち根として適するのは x = −2 のみである。 因数定理より、f(x) は x − (−2) を因数に持つ。 組立除法などにより
出典
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia